A Gaussian mixture model based statistical classification system for neonatal seizure detection

被引:0
作者
Thomas, Eoin M. [1 ]
Temko, Andriy [1 ]
Lightbody, Gordon [1 ]
Marnane, William P. [1 ]
Boylan, Geraldine B. [2 ]
机构
[1] UCC, Dept Elect Engn, Cork, Ireland
[2] Cork Univ Hosp, Dept Paediat & Child Hlth, Cork, Ireland
来源
2009 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING | 2009年
基金
爱尔兰科学基金会;
关键词
Neonatal Seizure Detection; Linear Discriminant Analysis; Principal Component Analysis; Gaussian Mixture Models;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A neonatal seizure detection system is proposed based on a Gaussian mixture model classifier. Linear discriminant analysis and principal component analysis are compared for the task of feature vector preprocessing. A postprocessing scheme is developed from the probability of seizure estimate in order to improve the performance of the system. Results are reported on a dataset of 17 patients with a total duration of 267.9 hours, the average ROC area of the system is 95.6%.
引用
收藏
页码:446 / +
页数:2
相关论文
共 22 条
[1]   Automated neonatal seizure detection: A multistage classification system through feature selection basedon relevance and redundancy analysis [J].
Aarabi, A ;
Wallois, F ;
Grebe, R .
CLINICAL NEUROPHYSIOLOGY, 2006, 117 (02) :328-340
[2]   A multistage knowledge-based system for EEG seizure detection in newborn infants [J].
Aarabi, Ardalan ;
Grebe, Reinhard ;
Wallois, Fabrice .
CLINICAL NEUROPHYSIOLOGY, 2007, 118 (12) :2781-2797
[3]   A computer-aided detection of EEG seizures in infants: A singular-spectrum approach and performance comparison [J].
Celka, P ;
Colditz, P .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2002, 49 (05) :455-462
[4]   Summary proceedings from the neurology group on neonatal seizures [J].
Clancy, RR .
PEDIATRICS, 2006, 117 (03) :S23-S27
[5]   Automated neonatal seizure detection mimicking a human observer reading EEG [J].
Deburchgraeve, W. ;
Cherian, P. J. ;
De Vos, M. ;
Swarte, R. M. ;
Blok, J. H. ;
Visser, G. H. ;
Govaert, P. ;
Van Huffel, S. .
CLINICAL NEUROPHYSIOLOGY, 2008, 119 (11) :2447-2454
[6]   AN OPTIMAL TRANSFORMATION FOR DISCRIMINANT AND PRINCIPAL COMPONENT ANALYSIS [J].
DUCHENE, J ;
LECLERCQ, S .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1988, 10 (06) :978-983
[7]  
Evans D, 1998, ARCH DIS CHILD-FETAL, V78, pF70, DOI 10.1136/fn.78.1.F70
[8]  
Faul S, 2005, 2005 IEEE INTERNATIONAL WORKSHOP ON INTELLIGENT SIGNAL PROCESSING (WISP), P381
[9]   An evaluation of automated neonatal seizure detection methods [J].
Faul, S ;
Boylan, G ;
Connolly, S ;
Marnane, L ;
Lightbody, G .
CLINICAL NEUROPHYSIOLOGY, 2005, 116 (07) :1533-1541
[10]   Automatic seizure detection in the newborn: methods and initial evaluation [J].
Gotman, J ;
Flanagan, D ;
Zhang, J ;
Rosenblatt, B .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1997, 103 (03) :356-362