PRIME-UNIVERSAL QUADRATIC FORMS ax2 + by2 + cz2 AND ax2 + by2 + cz2 + dw2

被引:2
作者
Doyle, Greg [1 ]
Williams, Kenneth S. [1 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
关键词
ternary quadratic forms; quaternary quadratic forms; prime-universality; THEOREM;
D O I
10.1017/S0004972719001023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A positive-definite diagonal quadratic form a1x2 1 + + anx2 n (a1; : : :; an 2 N) is said to be prime-universal if it is not universal and for every prime p there are integers x1; : : :; xn such that a1x2 1 + + anx2 n = p. We determine all possible prime-universal ternary quadratic forms ax2 + by2 + cz2 and all possible primeuniversal quaternary quadratic forms ax2 + by2 + cz2 + dw2. The prime-universal ternary forms are completely determined. The prime-universal quaternary forms are determined subject to the validity of two conjectures. We make no use of a result of Bhargava concerning quadratic forms representing primes which is stated but not proved in the literature.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 12 条
[1]  
Bhargava M., 2000, CONTEMP MATH-SINGAP, V272, P27
[2]  
Dickson L. E., 1947, MODERN ELEMENTARY TH
[3]   On ternary quadratic forms [J].
Duke, W .
JOURNAL OF NUMBER THEORY, 2005, 110 (01) :37-43
[4]   COMPLETENESS OF THE LIST OF SPINOR REGULAR TERNARY QUADRATIC FORMS [J].
Earnest, A. G. ;
Haensch, Anna .
MATHEMATIKA, 2019, 65 (02) :213-235
[5]  
Hahn AJ, 2008, ADV APPL CLIFFORD AL, V18, P665, DOI 10.1007/s00006-008-0090-y
[6]  
KAPLANSKY I, 1995, ACTA ARITH, V70, P209
[7]  
Kim BM, 2005, J REINE ANGEW MATH, V581, P23
[8]  
Kim MH, 2004, CONTEMP MATH, V344, P215
[9]   Ramanujan's ternary quadratic form [J].
Ono, K ;
Soundararajan, K .
INVENTIONES MATHEMATICAE, 1997, 130 (03) :415-454
[10]  
Ramanujan S., 1917, P CAMBRIDGE PHIL SOC, V19, P11