An inverse eigenvalue problem for symmetrical tridiagonal matrices

被引:27
作者
Pickmann, Hubert [1 ]
Soto, Ricardo L. [1 ]
Egana, J. [1 ]
Salas, Mario [1 ]
机构
[1] Univ Catolica Norte, Dept Matemat, Antofagasta, Chile
关键词
symmetrical tridiagonal matrices; matrix inverse eigenvalue problem;
D O I
10.1016/j.camwa.2006.12.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following inverse eigenvalue problem: to construct a symmetrical tridiagonal matrix from the minimal and maximal eigenvalues of all its leading principal submatrices. We give a necessary and sufficient condition for the existence of such a matrix and for the existence of a nonnegative symmetrical tridiagonal matrix. Our results are constructive, in the sense that they generate an algorithmic procedure to construct the matrix. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:699 / 708
页数:10
相关论文
共 7 条
[1]  
Chu M. T., 2005, INVERSE EIGENVALUE P
[2]  
de Boor C., 1978, LINEAR ALGEBRA APPL, V21, P245
[3]  
Gladwell G M L, 2004, INVERSE PROBLEMS VIB
[4]   CONSTRUCTION OF A JACOBI MATRIX FROM MIXED GIVEN DATA [J].
HOCHSTADT, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 28 (DEC) :113-115
[5]   The reconstruction of a specially structured Jacobi matrix with an application to damage detection in rods [J].
Jiménez, R ;
Santos, L ;
Kuhl, N ;
Egaña, T .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (11-12) :1815-1823
[6]   On the construction of a Jacobi matrix from its mixed-type eigenpairs [J].
Peng, ZY ;
Hu, XY ;
Zhang, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 362 :191-200
[7]  
[No title captured]