An analytic application of Geometric Invariant Theory

被引:3
作者
Buchdahl, Nicholas [1 ]
Schumacher, Georg [2 ]
机构
[1] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[2] Philipps Univ Marburg, Fachbereich Math & Informat, Hans Meerwein Str, D-35032 Marburg, Germany
关键词
Analytic GIT-quotients; Polystable vector bundles on compact; Kahler manifolds; Hermite-Einstein connections; Moduli spaces; REDUCTIVE GROUP-ACTIONS;
D O I
10.1016/j.geomphys.2021.104237
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a compact Kahler manifold, Geometric Invariant Theory is applied to construct analytic GIT-quotients that are local models for a classifying space of (poly)stable holomorphic vector bundles containing the coarse moduli space of stable bundles as an open subspace. For local models invariant generalized Weil-Petersson forms exist on the parameter spaces, which are restrictions of symplectic forms on smooth ambient spaces. If the underlying Kahler manifold is of Hodge type, then the Weil-Petersson form on the moduli space of stable vector bundles is known to be the Chern form of a certain determinant line bundle equipped with a Quillen metric. It gives rise to a holomorphic line bundle on the classifying GIT space together with a continuous hermitian metric. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 33 条
[1]  
[Anonymous], 1990, Oxford Mathematical Monographs
[2]  
[Anonymous], 1984, Coherent analytic sheaves
[3]   SELF-DUALITY IN 4-DIMENSIONAL RIEMANNIAN GEOMETRY [J].
ATIYAH, MF ;
HITCHIN, NJ ;
SINGER, IM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 362 (1711) :425-461
[4]  
Biswas I., 2016, ANN FAC SCI TOULOUSE, V25, P895
[5]   INFINITE DETERMINANTS, STABLE BUNDLES AND CURVATURE [J].
DONALDSON, SK .
DUKE MATHEMATICAL JOURNAL, 1987, 54 (01) :231-247
[6]  
Drezet J.-M., 2004, ALGEBRAIC GROUP ACTI, P39
[7]   THE MODULI SPACE OF EXTREMAL COMPACT KAHLER-MANIFOLDS AND GENERALIZED WEIL-PETERSSON METRICS [J].
FUJIKI, A ;
SCHUMACHER, G .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1990, 26 (01) :101-183
[8]   REDUCTION OF COMPLEX HAMILTONIAN G-SPACES [J].
HEINZNER, P ;
LOOSE, F .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1994, 4 (03) :288-297
[9]   GEOMETRIC INVARIANT-THEORY ON STEIN-SPACES [J].
HEINZNER, P .
MATHEMATISCHE ANNALEN, 1991, 289 (04) :631-662
[10]   STRATIFICATIONS ASSOCIATED TO REDUCTIVE GROUP ACTIONS ON AFFINE SPACES [J].
Hoskins, Victoria .
QUARTERLY JOURNAL OF MATHEMATICS, 2014, 65 (03) :1011-1047