Data assimilation with regularized nonlinear instabilities

被引:28
作者
Abarbanel, Henry D. I. [2 ,3 ]
Kostuk, Mark
Whartenby, William [1 ]
机构
[1] Univ Calif San Diego, Inst Nonlinear Sci, Dept Phys, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Scripps Inst Oceanog, Dept Phys, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Scripps Inst Oceanog, Marine Phys Lab, La Jolla, CA 92093 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
parameter estimation; DSPE; unstable synchronization manifold; conditional Lyapunov exponent; PARAMETER-ESTIMATION; SQP ALGORITHM; SYNCHRONIZATION; IDENTIFICATION; OBSERVER; SYSTEMS; MODEL; STATE; SNOPT;
D O I
10.1002/qj.600
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In variational formulations of data assimilation, the estimation of parameters or initial state values by a search for a minimum of a cost function can be hindered by the numerous local minima in the dependence of the cost function on those quantities. We argue that this is a result of instability on the synchronization manifold where the observations are required to match the model outputs in the situation where the data and the model are chaotic. The solution to this impediment to estimation is given as controls moving the positive conditional Lyapunov exponents on the synchronization manifold to negative values and adding to the cost function a penalty that drives those controls to zero as a result of the optimization process implementing the assimilation. This is seen as the solution to the proper size of 'nudging' terms: they are zero once the estimation has been completed, leaving only the physics of the problem to govern forecasts after the assimilation window. We show how this procedure, called Dynamical State and Parameter Estimation (DSPE), works in the case of the Lorenz96 model with nine dynamical variables. Using DSPE, we are able to accurately estimate the fixed parameter of this model and all of the state variables, observed and unobserved, over an assimilation time interval [0, T]. Using the state variables at T and the estimated fixed parameter, we are able to accurately forecast the state of the model for t > T to those times where the chaotic behaviour of the system interferes with forecast accuracy. Copyright (C) 2010 Royal Meteorological Society
引用
收藏
页码:769 / 783
页数:15
相关论文
共 64 条
[1]  
Abarbanel H. D. I., 1996, Analysis of Observed Chaotic Data
[2]  
ABARBANEL HDI, 2010, NEURONAL VA IN PRESS
[3]   Dynamical State and Parameter Estimation [J].
Abarbanel, Henry D. I. ;
Creveling, Daniel R. ;
Farsian, Reza ;
Kostuk, Mark .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2009, 8 (04) :1341-1381
[4]   Estimation of parameters in nonlinear systems using balanced synchronization [J].
Abarbanel, Henry D. I. ;
Creveling, Daniel R. ;
Jeanne, James M. .
PHYSICAL REVIEW E, 2008, 77 (01)
[5]   ON THE NUMBER OF SAMPLES NECESSARY TO ACHIEVE OBSERVABILITY [J].
AEYELS, D .
SYSTEMS & CONTROL LETTERS, 1981, 1 (02) :92-94
[6]   GENERIC OBSERVABILITY OF DIFFERENTIABLE SYSTEMS [J].
AEYELS, D .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1981, 19 (05) :595-603
[7]  
[Anonymous], 2003, ATMOSPHERIC MODELING
[8]  
[Anonymous], SYNCHRONIZATION CONT
[9]  
[Anonymous], 1979, Introduction to dynamic systems: theory, models, and applica-tions
[10]   A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm [J].
Auroux, D. ;
Blum, J. .
NONLINEAR PROCESSES IN GEOPHYSICS, 2008, 15 (02) :305-319