Graphs of Hydrogen-Bond Networks to Dissect Protein Conformational Dynamics

被引:17
作者
Bondar, Ana-Nicoleta [1 ,2 ,3 ]
机构
[1] Univ Bucharest, Fac Phys, Bucharest 077125, Romania
[2] Forschungszentrum Julich, Inst Neurosci & Med, D-52425 Julich, Germany
[3] Forschungszentrum Julich, Inst Adv Simulat IAS 5 INM 9, Computat Biomed, D-52425 Julich, Germany
关键词
SARS-COV-2; SPIKE; WATER-MOLECULES; DRUG DISCOVERY; ACTIVATION; CENTRALITY; ALGORITHM; MECHANISM; CHANNEL; TARGETS; ACE2;
D O I
10.1021/acs.jpcb.2c00200
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dynamic hydrogen bonds and hydrogen-bond networks are ubiquitous in proteins and protein complexes. Functional roles that have been assigned to hydrogen-bond networks include structural plasticity for protein function, allosteric conformational coupling, long-distance proton transfers, and transient storage of protons. Advances in structural biology provide invaluable insights into architectures of large proteins and protein complexes of direct interest to human physiology and disease, including G Protein Coupled Receptors (GPCRs) and the SARS-Covid-19 spike protein S, and give rise to the challenge of how to identify those interactions that are more likely to govern protein dynamics. This Perspective discusses applications of graph-based algorithms to dissect dynamical hydrogen-bond networks of protein complexes, with illustrations for GPCRs and spike protein S. H-bond graphs provide an overview of sites in GPCR structures where hydrogen-bond dynamics would be required to assemble longer-distance networks between functionally important motifs. In the case of spike protein S, graphs identify regions of the protein where hydrogen bonds rearrange during the reaction cycle and where local hydrogen-bond networks likely change in a virus variant of concern.
引用
收藏
页码:3973 / 3984
页数:12
相关论文
共 70 条
[1]   Network analysis of protein structures identifies functional residues [J].
Amitai, G ;
Shemesh, A ;
Sitbon, E ;
Shklar, M ;
Netanely, D ;
Venger, I ;
Pietrokovski, S .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 344 (04) :1135-1146
[2]  
[Anonymous], 2009, Introduction to Algorithms
[3]   Defining the hydrogen bond: An account (IUPAC Technical Report) [J].
Arunan, Elangannan ;
Desiraju, Gautam R. ;
Klein, Roger A. ;
Sadlej, Joanna ;
Scheiner, Steve ;
Alkorta, Ibon ;
Clary, David C. ;
Crabtree, Robert H. ;
Dannenberg, Joseph J. ;
Hobza, Pavel ;
Kjaergaard, Henrik G. ;
Legon, Anthony C. ;
Mennucci, Benedetta ;
Nesbitt, David J. .
PURE AND APPLIED CHEMISTRY, 2011, 83 (08) :1619-1636
[4]  
Ballesteros J. A., 1995, Methods in Neurosciences, V25, P366, DOI DOI 10.1016/S1043-9471(05)80049-7
[5]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[6]   C-Graphs Tool with Graphical User Interface to Dissect Conserved Hydrogen-Bond Networks: Applications to Visual Rhodopsins [J].
Bertalan, Eva ;
Lesca, Elena ;
Schertler, Gebhard F. X. ;
Bondar, Ana-Nicoleta .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (11) :5692-5707
[7]   Protein-water hydrogen-bond networks of G protein-coupled receptors: Graph-based analyses of static structures and molecular dynamics [J].
Bertalan, Eva ;
Lesnik, Samo ;
Bren, Urban ;
Bondar, Ana-Nicoleta .
JOURNAL OF STRUCTURAL BIOLOGY, 2020, 212 (03)
[8]   Reactions at Biomembrane Interfaces [J].
Bondar, Ana-Nicoleta ;
Lemieux, M. Joanne .
CHEMICAL REVIEWS, 2019, 119 (09) :6162-6183
[9]   Protonation-state-Coupled Conformational Dynamics in Reaction Mechanisms of Channel and Pump Rhodopsins [J].
Bondar, Ana-Nicoleta ;
Smith, Jeremy C. .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2017, 93 (06) :1336-1344
[10]   Hydrogen bond dynamics in membrane protein function [J].
Bondar, Ana-Nicoleta ;
White, Stephen H. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2012, 1818 (04) :942-950