Relating disease and predation:: equilibria of an epidemic model

被引:13
作者
Delgado, M [1 ]
Molina-Becerra, M [1 ]
Suárez, A [1 ]
机构
[1] Univ Sevilla, Dpto Ecuac Diferenciales & Anal Numer, E-41080 Seville, Spain
关键词
predator; prey; epidemic; stability; Dulac's criterion;
D O I
10.1002/mma.573
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we would like compare the spread of an infectious disease in a population without the influence of a predator and under its influence. We show that it is possible to control an epidemic in a population with the help of predators. Copyright (C) 2004 John Wiley Sons, Ltd.
引用
收藏
页码:349 / 362
页数:14
相关论文
共 13 条
[1]  
[Anonymous], 2001, DIFFER EQUAT DYN SYS
[2]  
Arino O, 2004, DISCRETE CONT DYN-B, V4, P501
[3]   Classical predator-prey system with infection of prey population - a mathematical model [J].
Chattopadhyay, J ;
Pal, S ;
El Abdllaoui, A .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2003, 26 (14) :1211-1222
[4]   A predator-prey model with disease in the prey [J].
Chattopadhyay, J ;
Arino, O .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (06) :747-766
[5]  
GURTIN ME, 1974, ARCH RATION MECH AN, V54, P281
[6]   Four predator prey models with infectious diseases [J].
Han, LT ;
Ma, Z ;
Hethcote, HW .
MATHEMATICAL AND COMPUTER MODELLING, 2001, 34 (7-8) :849-858
[7]   The mathematics of infectious diseases [J].
Hethcote, HW .
SIAM REVIEW, 2000, 42 (04) :599-653
[8]  
Lotka A.J., 1956, ELEMENTS MATH BIOL, DOI DOI 10.2307/1909476
[9]  
THIEME HR, 1992, J MATH BIOL, V30, P755
[10]   AGE-STRUCTURED PREDATOR-PREY MODELS [J].
VENTURINO, E .
MATHEMATICAL MODELLING, 1984, 5 (02) :117-128