An econometric model for intraday electricity trading

被引:19
作者
Kremer, Marcel [1 ]
Kiesel, Rudiger [1 ,2 ]
Paraschiv, Florentina [3 ,4 ]
机构
[1] Univ Duisburg Essen, Chair Energy Trading & Finance, Univ Str 12, D-45141 Essen, Germany
[2] Univ Oslo, Dept Math, POB 1053 Blindern, N-0316 Oslo, Norway
[3] Norwegian Univ Sci & Technol, NTNU Business Sch, N-7491 Trondheim, Norway
[4] Univ St Gallen, Inst Operat Res & Computat Finance, Bodanstr 6, CH-9000 St Gallen, Switzerland
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2021年 / 379卷 / 2202期
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
intraday electricity market; econometric modelling; 15-min contracts; renewable power forecasts; merit order curve; threshold regression; PRICES; MARKET;
D O I
10.1098/rsta.2019.0624
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper develops an econometric price model with fundamental impacts for intraday electricity markets of 15-min contracts. A unique dataset of intradaily updated forecasts of renewable power generation is analysed. We use a threshold regression model to examine how 15-min intraday trading depends on the slope of the merit order curve. Our estimation results reveal strong evidence of mean reversion in the price formation mechanism of 15-min contracts. Additionally, prices of neighbouring contracts exhibit strong explanatory power and a positive impact on prices of a given contract. We observe an asymmetric effect of renewable forecast changes on intraday prices depending on the merit-order-curve slope. In general, renewable forecasts have a higher explanatory power at noon than in the morning and evening, but price information is the main driver of 15-min intraday trading. This article is part of the theme issue 'The mathematics of energy systems'.
引用
收藏
页数:17
相关论文
共 50 条
[41]   Intraday News Trading: The Reciprocal Relationships Between the Stock Market and Economic News [J].
Strauss, Nadine ;
Vliegenthart, Rens ;
Verhoeven, Piet .
COMMUNICATION RESEARCH, 2018, 45 (07) :1054-1077
[42]   Intraday momentum in FX markets: Disentangling informed trading from liquidity provision [J].
Elaut, Gert ;
Frommel, Michael ;
Lampaert, Kevin .
JOURNAL OF FINANCIAL MARKETS, 2018, 37 :35-51
[43]   Intraday Trading and Bid-Ask Spread Characteristics for SPX and SPY Options [J].
Mishra, Suchismita ;
Daigler, Robert T. .
JOURNAL OF DERIVATIVES, 2014, 21 (03) :70-84
[44]   Beating the Naive-Combining LASSO with NaIve Intraday Electricity Price Forecasts [J].
Marcjasz, Grzegorz ;
Uniejewski, Bartosz ;
Weron, Rafal .
ENERGIES, 2020, 13 (07)
[45]   Carbon pass-through in the electricity sector: An econometric analysis [J].
Dagoumas, Athanasios S. ;
Polemis, Michael L. .
ENERGY ECONOMICS, 2020, 86
[46]   A High Winning Opportunities Intraday Volatility Trading Method Using Artificial Immune Systems [J].
Chan, Theo Raymond ;
Chan, Kwun-wing ;
Luk, Steve ;
Lee, Chun-ho .
RECENT TRENDS AND FUTURE TECHNOLOGY IN APPLIED INTELLIGENCE, IEA/AIE 2018, 2018, 10868 :212-218
[47]   INTRADAY DYNAMICS OF ASSET RETURNS, TRADING ACTIVITIES, AND IMPLIED VOLATILITIES: A TRIVARIATE GARCH FRAMEWORK [J].
Ryu, Doojin ;
Shim, Hyein .
ROMANIAN JOURNAL OF ECONOMIC FORECASTING, 2017, 20 (02) :45-61
[48]   Modeling Market Order Arrivals on the German Intraday Electricity Market with the Hawkes Process [J].
von Luckner, Nikolaus Graf ;
Kiesel, Ruediger .
JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2021, 14 (04)
[49]   Evaluating the predictive power of intraday technical trading in China's crude oil market [J].
Jin, Xiaoye .
JOURNAL OF FORECASTING, 2022, 41 (07) :1416-1432
[50]   A dynamic intraday measure of the probability of informed trading and firm-specific return variation [J].
Chang, Sanders S. ;
Chang, Lenisa V. ;
Wang, F. Albert .
JOURNAL OF EMPIRICAL FINANCE, 2014, 29 :80-94