Breaking the Nanoparticle Loading-Dispersion Dichotomy in Polymer Nanocomposites with the Art of Croissant-Making

被引:31
作者
Santagiuliana, Giovanni [1 ]
Picot, Olivier T. [1 ,2 ]
Crespo, Maria [1 ]
Porwal, Harshit [1 ,2 ]
Zhang, Han [1 ,2 ]
Li, Yan [1 ,3 ]
Rubini, Luca [4 ]
Colonna, Samuele [5 ]
Fina, Alberto [5 ]
Barbieri, Ettore [1 ,6 ]
Spoelstra, Anne B. [7 ,8 ]
Mirabello, Giulia [7 ,8 ]
Patterson, Joseph P. [7 ,8 ]
Botto, Lorenzo [1 ]
Pugno, Nicola M. [1 ,4 ,9 ]
Peijs, Ton [1 ,2 ]
Bilotti, Emiliano [1 ,2 ]
机构
[1] Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
[2] Nanoforce Technol Ltd, Mile End Rd, London E1 4NS, England
[3] China Univ Geosci, Gemmol Inst, 388 Lumo Rd, Wuhan 430074, Hubei, Peoples R China
[4] Univ Trento, Dept Civil Environm & Mech Engn, Lab Bioinspired & Graphene Nanomech, Via Mesiano 77, I-38123 Trento, Italy
[5] Politecn Torino, Dipartimento Sci Appl & Tecnol, I-15121 Alessandria, Italy
[6] Japan Agcy Marine Earth Sci & Technol, Yokohama Inst Earth Sci, Dept Math Sci & Adv Technol, Kanazawa Ku, 3173-25 Showa Machi, Yokohama, Kanagawa 23600001, Japan
[7] Eindhoven Univ Technol, Lab Mat & Interface Chem, Eindhoven, Netherlands
[8] Eindhoven Univ Technol, Ctr Multiscale Electron Microscopy, Dept Chem Engn & Chem, Eindhoven, Netherlands
[9] Italian Space Agcy, Edoardo Amaldi Fdn, Ket Lab, Via Politecn, I-00133 Rome, Italy
基金
英国工程与自然科学研究理事会; 欧洲研究理事会; “创新英国”项目;
关键词
polymer nanocomposites; nanoparticle dispersion; graphene; nanoclay; predictive model; multifunctional materials; GRAPHENE NANOCOMPOSITES; GRAPHITE NANOPLATELETS; PERCOLATION-THRESHOLD; MECHANICAL-PROPERTIES; FILLED POLYMERS; LAYER GRAPHENE; COMPOSITES; FILMS; POLYETHYLENE; LIMIT;
D O I
10.1021/acsnano.8b02877
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The intrinsic properties of nanomaterials offer promise for technological revolutions in many fields, including transportation, soft robotics, and energy. Unfortunately, the exploitation of such properties in polymer nanocomposites is extremely challenging due to the lack of viable dispersion routes when the filler content is high. We usually face a dichotomy between the degree of nanofiller loading and the degree of dispersion (and, thus, performance) because dispersion quality decreases with loading. Here, we demonstrate a potentially scalable pressing-and-folding method (P & F), inspired by the art of croissant-making, to efficiently disperse ultrahigh loadings of nanofillers in polymer matrices. A desired nanofiller dispersion can be achieved simply by selecting a sufficient number of P & F cycles. Because of the fine microstructural control enabled by P & F, mechanical reinforcements close to the theoretical maximum and independent of nanofiller loading (up to 74 vol %) were obtained. We propose a universal model for the P & F dispersion process that is parametrized on an experimentally quantifiable "D factor". The model represents a general guideline for the optimization of nanocomposites with enhanced functionalities including sensing, heat management, and energy storage.
引用
收藏
页码:9040 / 9050
页数:11
相关论文
共 71 条
[1]   Review: Nanocomposites in Food Packaging [J].
Arora, Amit ;
Padua, G. W. .
JOURNAL OF FOOD SCIENCE, 2010, 75 (01) :R43-R49
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Yielding and flow of highly concentrated, few-layer graphene suspensions [J].
Barwich, Sebastian ;
Coleman, Jonathan N. ;
Moebius, Matthias E. .
SOFT MATTER, 2015, 11 (16) :3159-3164
[4]   Sepiolite needle-like clay for PA6 nanocomposites: An alternative to layered silicates? [J].
Bilotti, E. ;
Zhang, R. ;
Deng, H. ;
Quero, F. ;
Fischer, H. R. ;
Peijs, T. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (15-16) :2587-2595
[5]   Carbon-Nanotube-Based Thermoelectric Materials and Devices [J].
Blackburn, Jeffrey L. ;
Ferguson, Andrew J. ;
Cho, Chungyeon ;
Grunlan, Jaime C. .
ADVANCED MATERIALS, 2018, 30 (11)
[6]   Fire retardant polymers: recent developments and opportunities [J].
Bourbigot, Serge ;
Duquesne, Sophie .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (22) :2283-2300
[7]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462
[8]   Mechanical properties of low-density polyethylene filled by graphite nanoplatelets [J].
Carotenuto, G. ;
De Nicola, S. ;
Palomba, M. ;
Pullini, D. ;
Horsewell, A. ;
Hansen, T. W. ;
Nicolais, L. .
NANOTECHNOLOGY, 2012, 23 (48)
[9]   Bio-based flame retardants: When nature meets fire protection [J].
Costes, Lucie ;
Laoutid, Fouad ;
Brohez, Sylvain ;
Dubois, Philippe .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2017, 117 :1-25
[10]   Tailoring of the electrical properties of carbon black-silica coatings for de-icing applications [J].
Enriquez, E. ;
Fernandez, J. F. ;
De Frutos, J. ;
De la Rubia, M. A. .
CERAMICS INTERNATIONAL, 2015, 41 (02) :2735-2743