Topological sequence entropy and topological dynamics of interval maps

被引:0
作者
Canovas, Jose S. [1 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena, Spain
来源
DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS | 2007年 / 14卷 / 01期
关键词
sequence entropy; Li-Yorke chaos; topological dynamics; interval maps; variational principle;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The relationship between the topological sequence entropy and the topological dynamics of a continuous interval map is studied. Some differencies between the classical topological entropy and the topological sequence entropy are found.
引用
收藏
页码:47 / 54
页数:8
相关论文
共 15 条
[1]  
Alseda L., 1993, Advanced Series in Nonlinear Dynamics, V5
[2]   Commutativity and non-commutativity of topological sequence entropy [J].
Balibrea, F ;
Peña, JSC ;
López, VJ .
ANNALES DE L INSTITUT FOURIER, 1999, 49 (05) :1693-+
[3]  
BLOCK L, 1992, LECT NOTES MATH, V1523
[5]  
Canovas J.S, 2002, AEQUATIONES MATH, V64, P53
[6]   Topological sequence entropy of interval maps [J].
Cánovas, JS .
NONLINEARITY, 2004, 17 (01) :49-56
[7]   An interval counterexample on topological sequence entropy [J].
Cánovas, JS .
ACTA MATHEMATICA HUNGARICA, 2000, 88 (1-2) :123-131
[8]   Topological sequence entropy of w-limit sets of interval maps [J].
Cánovas, JS .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2001, 7 (04) :781-786
[9]  
Denker M., 1976, Ergodic Theory on Compact Spaces
[10]   POSITIVE SEQUENCE TOPOLOGICAL-ENTROPY CHARACTERIZES CHAOTIC MAPS [J].
FRANZOVA, N ;
SMITAL, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (04) :1083-1086