Preparation of Chitosan/Poly(Vinyl Alcohol) Nanocomposite Films Incorporated with Oxidized Carbon Nano-Onions (Multi-Layer Fullerenes) for Tissue-Engineering Applications

被引:26
作者
Grande Tovar, Carlos David [1 ]
Ivan Castro, Jorge [2 ]
Humberto Valencia, Carlos [3 ]
Navia Porras, Diana Paola [4 ]
Mina Hernandez, Jose Herminsul [5 ]
Eliana Valencia, Mayra [5 ]
Daniel Velasquez, Jose [2 ]
Chaur, Manuel N. [2 ,6 ]
机构
[1] Univ Atlantico, Grp Invest Fotoquim & Fotobiol, Carrera 30 Numero 8-49, Puerto Colombia 081008, Colombia
[2] Univ Valle, Dept Quim, Grp Invest SIMERQO, Calle 13 100-00, Cali 76001, Colombia
[3] Univ Valle, Grp Biomat Dentales, Escuela Odontol, Calle 13 100-00, Cali 76001, Colombia
[4] Univ San Buenaventura Cali, Fac Ingn, Grp Invest Biotecnol, Carrera 122 6-65, Cali 76001, Colombia
[5] Univ Valle, Fac Ingn, Escuela Ingn Mat, Calle 13 100-00, Santiago De Cali 760032, Colombia
[6] Univ Valle, CENM, Calle 13 100-00, Santiago De Cali 760032, Colombia
关键词
biodegradable films; chitosan; oxidized carbon nano-onions; poly(vinyl alcohol); tissue engineering; CHITOSAN-BASED HYDROGELS; STEM-CELL PROLIFERATION; FOREIGN-BODY REACTION; IN-VITRO; BIOCOMPOSITE SCAFFOLDS; SURFACE MODIFICATION; CERAMIC PARTICLES; DRUG-DELIVERY; BIO-COMPOSITE; NANOPARTICLES;
D O I
10.3390/biom9110684
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recently, tissue engineering became a very important medical alternative in patients who need to regenerate damaged or lost tissues through the use of scaffolds that support cell adhesion and proliferation. Carbon nanomaterials (carbon nanotubes, fullerenes, multi-wall fullerenes, and graphene) became a very important alternative to reinforce the mechanical, thermal, and antimicrobial properties of several biopolymers. In this work, five different formulations of chitosan/poly(vinyl alcohol)/oxidized carbon nano-onions (CS/PVA/ox-CNO) were used to prepare biodegradable scaffolds with potential biomedical applications. Film characterization consisted of Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), tension strength, Young's modulus, X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). The degradation in a simulated body fluid (FBS) demonstrated that all the formulations lost between 75% and 80% of their weight after 15 days of treatment, but the degradation decreased with the ox-CNO content. In vivo tests after 90 days of subdermal implantation of the nanocomposite films in Wistar rats' tissue demonstrated good biocompatibility without allergenic reactions or pus formation. There was a good correlation between FBS hydrolytic degradation and degradation in vivo for all the samples, since the ox-CNO content increased the stability of the material. All these results indicate the potential of the CS/PVA/ox-CNO nanocomposite films in tissue engineering, especially for long-term applications.
引用
收藏
页数:24
相关论文
共 107 条
[41]   Green synthesis of degradable conductive thermosensitive oligopyrrole/chitosan hydrogel intended for cartilage tissue engineering [J].
Kashi, Mana ;
Baghbani, Fatemeh ;
Mortarzadeh, Fathollah ;
Mobasheri, Hamid ;
Kowsari, Elaheh .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 107 :1567-1575
[42]   Engineering extracellular matrix through nanotechnology [J].
Kelleher, Cassandra M. ;
Vacanti, Joseph P. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2010, 7 :S717-S729
[43]   A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications [J].
Khalil, Abdul H. P. S. ;
Saurabh, Chaturbhuj K. ;
Adnan, A. S. ;
Fazita, M. R. Nurul ;
Syakir, M. I. ;
Davoudpour, Y. ;
Rafatullah, M. ;
Abdullah, C. K. ;
Haafiz, M. K. M. ;
Dungani, R. .
CARBOHYDRATE POLYMERS, 2016, 150 :216-226
[44]   Macrophage reaction against biomaterials in the mouse model - Phenotypes, functions and markers [J].
Klopfleisch, R. .
ACTA BIOMATERIALIA, 2016, 43 :3-13
[45]   Nanoclay-reinforced electrospun chitosan/PVA nanocomposite nanofibers for biomedical applications [J].
Koosha, Mojtaba ;
Mirzadeh, Hamid ;
Shokrgozar, Mohammad Ali ;
Farokhi, Mehdi .
RSC ADVANCES, 2015, 5 (14) :10479-10487
[46]   The use of ASCs engineered to express BMP2 or TGF-β3 within scaffold constructs to promote calvarial bone repair [J].
Lin, Chin-Yu ;
Chang, Yu-Han ;
Li, Kuei-Chang ;
Lu, Chia-Hsin ;
Sung, Li-Yu ;
Yeh, Chia-Lin ;
Lin, Kun-Ju ;
Huang, Shiu-Feng ;
Yen, Tzu-Chen ;
Hu, Yu-Chen .
BIOMATERIALS, 2013, 34 (37) :9401-9412
[47]   Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II) [J].
Liu, Li ;
Li, Cui ;
Bao, Changli ;
Jia, Qiong ;
Xiao, Pengfei ;
Liu, Xiaoting ;
Zhang, Qiuping .
TALANTA, 2012, 93 :350-357
[48]   Evaluation of the Biocompatibility of CS-Graphene Oxide Compounds In Vivo [J].
Lopez Tenorio, Diego ;
Valencia, Carlos H. ;
Valencia, Cesar ;
Zuluaga, Fabio ;
Valencia, Mayra E. ;
Mina, Jose H. ;
Grande Tovar, Carlos David .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (07)
[49]   Poly(vinyl alcohol)/chitosan blend membranes for pervaporation of benzene/cyclohexane mixtures [J].
Lu, Lianyu ;
Peng, Fubing ;
Jiang, Zhongyi ;
Wang, Jianghui .
JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 101 (01) :167-173
[50]   Intelligent poly (vinyl alcohol)-chitosan nanoparticles-mulberry extracts films capable of monitoring pH variations [J].
Ma, Qianyun ;
Liang, Tieqiang ;
Cao, Lele ;
Wang, Lijuan .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 108 :576-584