Analytic solution of the Starobinsky model for inflation

被引:26
作者
Paliathanasis, Andronikos [1 ,2 ]
机构
[1] Univ Austral Chile, Inst Ciencias Fis & Matemat, Valdivia, Chile
[2] Durban Univ Technol, Inst Syst Sci, POB 1334, ZA-4000 Durban, South Africa
来源
EUROPEAN PHYSICAL JOURNAL C | 2017年 / 77卷 / 07期
关键词
ORDINARY DIFFERENTIAL-EQUATIONS; LINEAR EVOLUTION-EQUATIONS; MODIFIED GRAVITY; SINGULARITY ANALYSIS; NOETHER SYMMETRY; CONSTRAINTS; CONNECTION; INVARIANT; UNIVERSE;
D O I
10.1140/epjc/s10052-017-5009-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We prove that the field equations of the Starobinsky model for inflation in a Friedmann-Lemaitre-Robertson-Walker metric constitute an integrable system. The analytical solution in terms of a Painleve series for the Starobinsky model is presented for the case of zero and nonzero spatial curvature. In both cases the leading-order term describes the radiation era provided by the corresponding higher-order theory.
引用
收藏
页数:4
相关论文
共 50 条
[31]   Starobinsky-like inflation in no-scale supergravity Wess-Zumino model with Polonyi term [J].
Romao, Miguel Crispim ;
King, Stephen F. .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (07)
[32]   Starobinsky inflation and dark energy and dark matter effects from quasicrystal like spacetime structures [J].
Aschheim, Raymond ;
Bubuianu, Laurentiu ;
Fang, Fang ;
Irwin, Klee ;
Ruchin, Vyacheslav ;
Vacaru, Sergiu, I .
ANNALS OF PHYSICS, 2018, 394 :120-138
[33]   Starobinsky model with a viscous fluid [J].
Myrzakulov, Y. ;
Sharlez, A. ;
Kenzhalin, D. ;
Myrzakul, S. ;
Yergaliyeva, G. .
INTERNATIONAL JOURNAL OF MATHEMATICS AND PHYSICS, 2022, 13 (01) :99-104
[34]   Is imaginary Starobinsky model real? [J].
Kallosh, Renata ;
Linde, Andrei ;
Vercnocke, Bert ;
Chemissany, Wissam .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2014, (07)
[35]   Reheating processes after Starobinsky inflation in old-minimal supergravity [J].
Terada, Takahiro ;
Watanabe, Yuki ;
Yamada, Yusuke ;
Yokoyama, Jun'ichi .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (02)
[36]   Chaotic inflation limits for non-minimal models with a Starobinsky attractor [J].
Mosk, B. ;
van der Schaar, J. P. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2014, (12)
[37]   Phenomenology of SUGRA extensions of the Starobinsky model [J].
Kwan , Man Ping .
ANNALS OF PHYSICS, 2019, 411
[38]   Refined predictions for Starobinsky inflation and post-inflationary constraints in light of ACT [J].
Drees, Manuel ;
Xu, Yong .
PHYSICS LETTERS B, 2025, 867
[39]   Starobinsky cosmological model in Palatini formalism [J].
Stachowski, Aleksander ;
Szydlowski, Marek ;
Borowiec, Andrzej .
EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (06)
[40]   Helical phase inflation via non-geometric flux compactifications: from natural to starobinsky-like inflation [J].
Li, Tianjun ;
Li, Zhijin ;
Nanopoulos, Dimitri V. .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (10)