Fractional Integral Inequalities of Hermite-Hadamard Type for (h,g;m)-Convex Functions with Extended Mittag-Leffler Function

被引:3
|
作者
Andric, Maja [1 ]
机构
[1] Univ Split, Fac Civil Engn Architecture & Geodesy, Matice hrvatske 15, Split 21000, Croatia
关键词
fractional calculus; Mittag-Leffler function; convex function; Hermite-Hadamard inequality;
D O I
10.3390/fractalfract6060301
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Several fractional integral inequalities of the Hermite-Hadamard type are presented for the class of (h,g;m)-convex functions. Applied fractional integral operators contain extended generalized Mittag-Leffler functions as their kernel, thus enabling new fractional integral inequalities that extend and generalize the known results. As an application, the upper bounds of fractional integral operators for (h,g;m)-convex functions are given.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] HERMITE-HADAMARD TYPE LOCAL FRACTIONAL INTEGRAL INEQUALITIES WITH MITTAG-LEFFLER KERNEL FOR GENERALIZED PREINVEX FUNCTIONS
    Sun, Wenbing
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (08)
  • [2] Fractional Hermite-Hadamard inequalities containing generalized Mittag-Leffler function
    Marcela V Mihai
    Muhammad Uzair Awan
    Muhammad Aslam Noor
    Khalida Inayat Noor
    Journal of Inequalities and Applications, 2017
  • [3] Fractional Hermite-Hadamard inequalities containing generalized Mittag-Leffler function
    Mihai, Marcela V.
    Awan, Muhammad Uzair
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [4] Generalized fractional integral inequalities of Hermite-Hadamard type for (,m)-convex functions
    Qi, Feng
    Mohammed, Pshtiwan Othman
    Yao, Jen-Chih
    Yao, Yong-Hong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019,
  • [5] On new general versions of Hermite-Hadamard type integral inequalities via fractional integral operators with Mittag-Leffler kernel
    Kavurmaci onalan, Havva
    Akdemir, Ahmet Ocak
    Avci Ardic, Merve
    Baleanu, Dumitru
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [6] General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function
    Farid, G.
    Khan, K. A.
    Latif, N.
    Rehman, A. U.
    Mehmood, S.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [7] Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels
    Fernandez, Arran
    Mohammed, Pshtiwan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (10) : 8414 - 8431
  • [8] General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function
    G. Farid
    K. A. Khan
    N. Latif
    A. U. Rehman
    S. Mehmood
    Journal of Inequalities and Applications, 2018
  • [9] (h-m)-convex functions and associated fractional Hadamard and Fejer-Hadamard inequalities via an extended generalized Mittag-Leffler function
    Kang, Shin Min
    Farid, Ghulam
    Nazeer, Waqas
    Mehmood, Sajid
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019,
  • [10] Fractional Integral Inequalities of Hermite-Hadamard Type for Convex Functions With Respect to a Monotone Function
    Mohammed, Pshtiwan Othman
    FILOMAT, 2020, 34 (07) : 2401 - 2411