Survival probability for super-Brownian motion with absorption

被引:1
作者
Li, Zenghu [1 ]
Zhu, Yaping [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
基金
国家重点研发计划;
关键词
Super-Brownian motion; Absorption; Survival probability; Brownian bridge; Bessel process; EQUATION;
D O I
10.1016/j.spl.2022.109460
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the supercritical super-Brownian motion with a general branching mechanism, where particles move as Brownian motion with drift -rho and are killed when they reach the origin. We obtain a large-time asymptotic formula for the survival probability.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 21 条
[1]  
[Anonymous], 2002, Handbook of Brownian Motion-Facts and Formulae
[2]  
[Anonymous], 1986, MARKOV PROCESSES CHA
[3]   The prolific backbone for supercritical superprocesses [J].
Berestycki, J. ;
Kyprianou, A. E. ;
Murillo-Salas, A. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (06) :1315-1331
[4]   Critical branching Brownian motion with absorption: survival probability [J].
Berestycki, Julien ;
Berestycki, Nathanael ;
Schweinsberg, Jason .
PROBABILITY THEORY AND RELATED FIELDS, 2014, 160 (3-4) :489-520
[5]  
Billingsley Patrick, 2013, Convergence of probability measures
[6]  
BRAMSON M, 1983, MEM AM MATH SOC, V44, P1
[7]   LOCATION OF THE TRAVELING-WAVE FOR THE KOLMOGOROV EQUATION [J].
BRAMSON, M .
PROBABILITY THEORY AND RELATED FIELDS, 1986, 73 (04) :481-515
[8]   THE 1991 WALD MEMORIAL LECTURES - SUPERPROCESSES AND PARTIAL-DIFFERENTIAL EQUATIONS [J].
DYNKIN, EB .
ANNALS OF PROBABILITY, 1993, 21 (03) :1185-1262
[9]   Skeletal stochastic differential equations for superprocesses [J].
Fekete, Dorottya ;
Fontbona, Joaquin ;
Kyprianou, Andreas E. .
JOURNAL OF APPLIED PROBABILITY, 2020, 57 (04) :1111-1134
[10]   Survival probabilities for branching Brownian motion with absorption [J].
Harris, J. W. ;
Harris, S. C. .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 :81-92