Natural Language Processing-Based Virtual Cofacilitator for Online Cancer Support Groups: Protocol for an Algorithm Development and Validation Study

被引:11
作者
Leung, Yvonne W. [1 ,2 ,3 ]
Wouterloot, Elise [1 ]
Adikari, Achini [4 ]
Hirst, Graeme [5 ]
de Silva, Daswin [4 ]
Wong, Jiahui [1 ,2 ]
Bender, Jacqueline L. [3 ,6 ]
Gancarz, Mathew [1 ]
Gratzer, David [2 ,7 ]
Alahakoon, Damminda [4 ]
Esplen, Mary Jane [2 ]
机构
[1] Univ Hlth Network, de Souza Inst, 222 St Patrick St Rm 503, Toronto, ON M5T 1V4, Canada
[2] Univ Toronto, Fac Med, Dept Psychiat, Toronto, ON, Canada
[3] Univ Hlth Network, Princess Margaret Canc Ctr, Toronto, ON, Canada
[4] La Trobe Univ, Ctr Data Analyt & Cognit, Melbourne, Vic, Australia
[5] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[6] Univ Toronto, Dalla Lana Sch Publ Hlth, Toronto, ON, Canada
[7] Ctr Addict & Mental Hlth, Toronto, ON, Canada
关键词
artificial intelligence; cancer; online support groups; emotional distress; natural language processing; participant engagement; BREAST-CANCER; DEPRESSION; DISTRESS; WOMEN; FRAMEWORK; VALIDITY; EMOTION; ANXIETY;
D O I
10.2196/21453
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: Cancer and its treatment can significantly impact the short-and long-term psychological well-being of patients and families. Emotional distress and depressive symptomatology are often associated with poor treatment adherence, reduced quality of life, and higher mortality. Cancer support groups, especially those led by health care professionals, provide a safe place for participants to discuss fear, normalize stress reactions, share solidarity, and learn about effective strategies to build resilience and enhance coping. However, in-person support groups may not always be accessible to individuals; geographic distance is one of the barriers for access, and compromised physical condition (eg, fatigue, pain) is another. Emerging evidence supports the effectiveness of online support groups in reducing access barriers. Text-based and professional-led online support groups have been offered by Cancer Chat Canada. Participants join the group discussion using text in real time. However, therapist leaders report some challenges leading text-based online support groups in the absence of visual cues, particularly in tracking participant distress. With multiple participants typing at the same time, the nuances of the text messages or red flags for distress can sometimes be missed. Recent advances in artificial intelligence such as deep learning-based natural language processing offer potential solutions. This technology can be used to analyze online support group text data to track participants' expressed emotional distress, including fear, sadness, and hopelessness. Artificial intelligence allows session activities to be monitored in real time and alerts the therapist to participant disengagement. Objective: We aim to develop and evaluate an artificial intelligence-based cofacilitator prototype to track and monitor online support group participants' distress through real-time analysis of text-based messages posted during synchronous sessions. Methods: An artificial intelligence-based cofacilitator will be developed to identify participants who are at-risk for increased emotional distress and track participant engagement and in-session group cohesion levels, providing real-time alerts for therapist to follow-up; generate postsession participant profiles that contain discussion content keywords and emotion profiles for each session; and automatically suggest tailored resources to participants according to their needs. The study is designed to be conducted in 4 phases consisting of (1) development based on a subset of data and an existing natural language processing framework, (2) performance evaluation using human scoring, (3) beta testing, and (4) user experience evaluation. Results: This study received ethics approval in August 2019. Phase 1, development of an artificial intelligence-based cofacilitator, was completed in January 2020. As of December 2020, phase 2 is underway. The study is expected to be completed by September 2021. Conclusions: An artificial intelligence-based cofacilitator offers a promising new mode of delivery of person-centered online support groups tailored to individual needs.
引用
收藏
页数:14
相关论文
共 50 条
[41]   An Intelligent System for Classifying Patient Complaints Using Machine Learning and Natural Language Processing: Development and Validation Study [J].
Li, Xiadong ;
Shu, Qiang ;
Kong, Canhong ;
Wang, Jinhu ;
Li, Gang ;
Fang, Xin ;
Lou, Xiaomin ;
Yu, Gang .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2025, 27
[42]   Natural Language Processing Reveals Vulnerable Mental Health Support Groups and Heightened Health Anxiety on Reddit During COVID-19: Observational Study [J].
Low, Daniel M. ;
Rumker, Laurie ;
Talkar, Tanya ;
Torous, John ;
Cecchi, Guillermo ;
Ghosh, Satrajit S. .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2020, 22 (10)
[43]   Automated Identification of Aspirin-Exacerbated Respiratory Disease Using Natural Language Processing and Machine Learning: Algorithm Development and Evaluation Study [J].
Pongdee, Thanai ;
Larson, Nicholas B. ;
Divekar, Rohit ;
Bielinski, Suzette J. ;
Liu, Hongfang ;
Moon, Sungrim .
JMIR AI, 2023, 2
[44]   An Ontology Development Methodology Based on Ontology-Driven Conceptual Modeling and Natural Language Processing: Tourism Case Study [J].
Haridy, Shaimaa ;
Ismail, Rasha M. ;
Badr, Nagwa ;
Hashem, Mohamed .
BIG DATA AND COGNITIVE COMPUTING, 2023, 7 (02)
[45]   Leveraging natural language processing and machine learning to characterize psychological stress and life meaning and purpose in pediatric cancer survivors: a preliminary validation study [J].
Sim, Jin-ah ;
Huang, Xiaolei ;
Webster, Rachel T. ;
Srivastava, Kumar ;
Ness, Kirsten K. ;
Hudson, Melissa M. ;
Baker, Justin N. ;
Huang, I-Chan .
JAMIA OPEN, 2025, 8 (02)
[46]   Optimizing Clinical Trial Eligibility Design Using Natural Language Processing Models and Real-World Data: Algorithm Development and Validation [J].
Lee, Kyeryoung ;
Liu, Zongzhi ;
Mai, Yun ;
Jun, Tomi ;
Ma, Meng ;
Wang, Tongyu ;
Ai, Lei ;
Calay, Ediz ;
Oh, William ;
Stolovitzky, Gustavo ;
Schadt, Eric ;
Wang, Xiaoyan .
JMIR AI, 2024, 3
[47]   Using natural language processing for identification of herpes zoster ophthalmicus cases to support population-based study [J].
Zheng, Chengyi ;
Luo, Yi ;
Mercado, Cheryl ;
Sy, Lina ;
Jacobsen, Steven J. ;
Ackerson, Brad ;
Lewin, Bruno ;
Tseng, Hung Fu .
CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2019, 47 (01) :7-14
[48]   The development of an online intervention (Care Assist) to support male caregivers of women with breast cancer: a protocol for a mixed methods study [J].
Levesque, Janelle V. ;
Gerges, Martha ;
Girgis, Afaf .
BMJ OPEN, 2018, 8 (02)
[49]   A Natural Language Processing Model for COVID-19 Detection Based on Dutch General Practice Electronic Health Records by Using Bidirectional Encoder Representations From Transformers: Development and Validation Study [J].
Homburg, Maarten ;
Meijer, Eline ;
Berends, Matthijs ;
Kupers, Thijmen ;
Hartman, Tim Olde ;
Muris, Jean ;
de Schepper, Evelien ;
Velek, Premysl ;
Kuiper, Jeroen ;
Berger, Marjolein ;
Peters, Lilian .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2023, 25
[50]   Multifaceted Natural Language Processing Task-Based Evaluation of Bidirectional Encoder Representations From Transformers Models for Bilingual (Korean and English) Clinical Notes: Algorithm Development and Validation [J].
Kim, Kyungmo ;
Park, Seongkeun ;
Min, Jeongwon ;
Park, Sumin ;
Kim, Ju Yeon ;
Eun, Jinsu ;
Jung, Kyuha ;
Elyson, Yoobin ;
Kim, Esther ;
Lee, Eun Young ;
Lee, Joonhwan ;
Choi, Jinwook .
JMIR MEDICAL INFORMATICS, 2024, 12