Impact of Alkali Cation Identity on the Conversion of HCO3- to CO in Bicarbonate Electrolyzers

被引:38
作者
Fink, Arthur G. [1 ]
Lees, Eric W. [2 ]
Zhang, Zishuai [1 ]
Ren, Shaoxuan [1 ]
Delima, Roxanna S. [2 ,3 ]
Berlinguette, Curtis P. [1 ,2 ,3 ,4 ]
机构
[1] Univ British Columbia, Dept Chem, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
[2] Univ British Columbia, Dept Chem & Biol Engn, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
[3] Univ British Columbia, Stewart Blusson Quantum Matter Inst, 2355 East Mall, Vancouver, BC V6T 1Z4, Canada
[4] Canadian Inst Adv Res CIFAR, 661 Univ Ave, Toronto, ON M5G 1M1, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
heterogeneous catalysis; alkali metal cation; carbon dioxide electroreduction; bicarbonate; silver; ELECTROCHEMICAL REDUCTION;
D O I
10.1002/celc.202100408
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The reduction of CO2 to CO from a bicarbonate feedstock offers an opportunity to directly use aqueous carbon capture solutions, while bypassing ex-situ energy-intensive gaseous CO2 regeneration. In this study, we resolved how the electrolyte cation identity (Li+, Na+, K+, Cs+) affects the two reactions that make bicarbonate electrolysis possible: (i) the production of in-situ CO2 formed through reaction of HCO3- (from the catholyte) with H+ (sourced from the membrane); and (ii) the electroreduction of CO2 into CO. Our results show that cation identity does not change the rate of in-situ CO2 formation, but it does enhance the rate of the CO2 reduction reaction (CO2RR). Electrolysis experiments performed with a constant [HCO3-] showed that CO selectivities progressively increased for the series Li+, Na+, K+, and Cs+, respectively. Optimization of the electrolyte composition yielded a CO selectivity of similar to 80 % during electrolysis of 1.5 M CsHCO3 solutions at 100 mA cm(-2), while saturated LiHCO3 solutions (0.84 M) yielded CO selectivities values of merely 30 % at the same current density. This study demonstrates a quantitative relationship between CO product selectivity and the cation radius, which provides a pathway to integrate bicarbonate electrolysis to carbon capture.
引用
收藏
页码:2094 / 2100
页数:7
相关论文
共 50 条
[1]   Spectroscopic Evidence of Size-Dependent Buffering of Interfacial pH by Cation Hydrolysis during CO2 Electroreduction [J].
Ayemoba, Onagie ;
Cuesta, Angel .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (33) :27377-27382
[2]   System Design Rules for Intensifying the Electrochemical Reduction of CO2 to CO on Ag Nanoparticles [J].
Bhargava, Saket S. ;
Proietto, Federica ;
Azmoodeh, Daniel ;
Cofell, Emiliana R. ;
Henckel, Danielle A. ;
Verma, Sumit ;
Brooks, Christopher J. ;
Gewirth, Andrew A. ;
Kenis, Paul J. A. .
CHEMELECTROCHEM, 2020, 7 (09) :2001-2011
[3]   Modeling the electrical double layer to understand the reaction environment in a CO2 electrocatalytic system [J].
Bohra, Divya ;
Chaudhry, Jehanzeb H. ;
Burdyny, Tom ;
Pidko, Evgeny A. ;
Smith, Wilson A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (11) :3380-3389
[4]   What Should We Make with CO2 and How Can We Make It? [J].
Bushuyev, Oleksandr S. ;
De Luna, Phil ;
Cao Thang Dinh ;
Tao, Ling ;
Saur, Genevieve ;
van de lagemaat, Jao ;
Kelley, Shana O. ;
Sargent, Edward H. .
JOULE, 2018, 2 (05) :825-832
[5]   Electric Field Effects in Electrochemical CO2 Reduction [J].
Chen, Leanne D. ;
Urushihara, Makoto ;
Chan, Karen ;
Norskov, Jens K. .
ACS CATALYSIS, 2016, 6 (10) :7133-7139
[6]   Activation of CO2 at the electrode-electrolyte interface by a co-adsorbed cation and an electric field [J].
Chernyshova, Irina V. ;
Ponnurangam, Sathish .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (17) :8797-8807
[7]   Catalysis of the electrochemical reduction of carbon dioxide [J].
Costentin, Cyrille ;
Robert, Marc ;
Saveant, Jean-Michel .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (06) :2423-2436
[8]   Alternate Strategies for Solar Fuels from Carbon Dioxide [J].
Crabtree, Robert H. .
ACS ENERGY LETTERS, 2020, 5 (08) :2505-2507
[9]   CO2 electrolysis to multicarbon products at activities greater than 1 A cm-2 [J].
de Arquer, F. Pelayo Garcia ;
Cao-Thang Dinh ;
Ozden, Adnan ;
Wicks, Joshua ;
McCallum, Christopher ;
Kirmani, Ahmad R. ;
Dae-Hyun Nam ;
Gabardo, Christine ;
Seifitokaldani, Ali ;
Wang, Xue ;
Li, Yuguang C. ;
Li, Fengwang ;
Edwards, Jonathan ;
Richter, Lee J. ;
Thorpe, Steven J. ;
Sinton, David ;
Sargent, Edward H. .
SCIENCE, 2020, 367 (6478) :661-+
[10]   What would it take for renewably powered electrosynthesis to displace petrochemical processes? [J].
De Luna, Phil ;
Hahn, Christopher ;
Higgins, Drew ;
Jaffer, Shaffiq A. ;
Jaramillo, Thomas F. ;
Sargent, Edward H. .
SCIENCE, 2019, 364 (6438) :350-+