Vanishing exponential integrability for functions whose gradients belong to Ln(log(e+L))α

被引:20
作者
Adams, DR
Hurri-Syrjänen, R
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
[2] Univ Helsinki, Dept Math, FIN-00014 Helsinki, Finland
关键词
capacity; capacitary strong-type inequality; exponential-type inequality; vanishing exponential integrability;
D O I
10.1016/S0022-1236(02)00092-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If the gradient of u(x) is nth power locally integrable on Euclidean n-space, then the integral average over a ball B of the exponential of a constant multiple of \u(x)-u(B)\n/((n-1)), u(B)=average of u over B, tends to 1 as the radius of B shrinks to zero-for quasi almost all center points. This refines a result of N. Trudinger (1967). We prove here a similar result for the class of gradients in L-n(log(e+L))(alpha), 0less than or equal toalphaless than or equal ton-1. The results depend on a capacitary strong-type inequality for these spaces. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:162 / 178
页数:17
相关论文
共 15 条
  • [1] ADAMS D. R., LECT LP POTENTIAL TH
  • [2] Adams DR., 1999, Function Spaces and Potential Theory
  • [3] ADAMS DR, IN PRESS P AM MATH S
  • [4] [Anonymous], 1999, GRUNDLEHREN MATH WIS
  • [5] Bennett C., 1988, INTERPOLATION OPERAT
  • [6] An extension of Hedberg's convolution inequality and applications
    Cianchi, A
    Stroffolini, B
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 227 (01) : 166 - 186
  • [7] EDMUNDS DE, 1995, INDIANA U MATH J, V44, P19
  • [8] Sobolev inequalities of exponential type
    Edmunds, DE
    Hurri-Syrjänen, R
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2001, 123 (1) : 61 - 92
  • [9] Kokilashvili Vakhtang, 1991, Weighted Inequalities In Lorentz And Orlicz Spaces
  • [10] MAZYA VI, 1985, SOBELEV SPACES