A Novel Runtime Algorithm for the Real-Time Analysis and Detection of Unexpected Changes in a Real-Size SHM Network with Quasi-Distributed FBG Sensors

被引:6
作者
Sakiyama, Felipe Isamu H. [1 ,2 ]
Lehmann, Frank [2 ]
Garrecht, Harald [2 ]
机构
[1] Fed Univ Jequitinhonha & Mucuri Valleys UFVJM, Inst Sci Engn & Technol ICET, BR-39803371 Teofilo Otoni, Brazil
[2] Univ Stuttgart, Mat Testing Inst MPA, D-70569 Stuttgart, Germany
关键词
structural health monitoring; FBG sensors; damage detection; MODEL; IDENTIFICATION;
D O I
10.3390/s21082871
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The ability to track the structural condition of existing structures is one of the main concerns of bridge owners and operators. In the context of bridge maintenance programs, visual inspection predominates nowadays as the primary source of information. Yet, visual inspections alone are insufficient to satisfy the current needs for safety assessment. From this perspective, extensive research on structural health monitoring has been developed in recent decades. However, the transfer rate from laboratory experiments to real-case applications is still unsatisfactory. This paper addresses the main limitations that slow the deployment and the acceptance of real-size structural health monitoring systems (SHM) and presents a novel real-time analysis algorithm based on random variable correlation for condition monitoring. The proposed algorithm was designed to respond automatically to detect unexpected events, such as local structural failure, within a multitude of random dynamic loads. The results are part of a project on SHM, where a high sensor-count monitoring system based on long-gauge fiber Bragg grating sensors (LGFBG) was installed on a prestressed concrete bridge in Neckarsulm, Germany. The authors also present the data management system developed to handle a large amount of data, and demonstrate the results from one of the implemented post-processing methods, the principal component analysis (PCA). The results showed that the deployed SHM system successfully translates the massive raw data into meaningful information. The proposed real-time analysis algorithm delivers a reliable notification system that allows bridge managers to track unexpected events as a basis for decision-making.
引用
收藏
页数:32
相关论文
共 63 条
[1]   Development of a bridge management system incorporating a newly developed model for element condition evaluation based on damage effects [J].
Akgul, Ferhat .
STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2013, 9 (12) :1206-1224
[2]  
[Anonymous], 1993, THESIS U AALBORG DEN
[3]  
[Anonymous], 2011, PRUEBA SOLEDAD PAISA, DOI DOI 10.1520/G0148-97R11
[4]  
[Anonymous], 2020, ANN ONCOL, DOI DOI 10.1093/annonc/mdy517
[5]   Strain expansion-reduction approach [J].
Baqersad, Javad ;
Bharadwaj, Kedar .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 101 :156-167
[6]  
Catbas F.N., 2013, STRUCTURAL IDENTIFIC
[7]   Nonparametric analysis of structural health monitoring data for identification and localization of changes: Concept, lab, and real-life studies [J].
Catbas, F. Necati ;
Gokce, Hasan B. ;
Gul, Mustafa .
STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2012, 11 (05) :613-626
[8]  
CAWLEY P, 1985, P I MECH ENG B-J ENG, V199, P161
[9]   Structural health monitoring: Closing the gap between research and industrial deployment [J].
Cawley, Peter .
STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2018, 17 (05) :1225-1244
[10]   High-Temperature (>500°C) Wall Thickness Monitoring Using Dry-Coupled Ultrasonic Waveguide Transducers [J].
Cegla, Frederic B. ;
Cawley, Peter ;
Allin, Jonathan ;
Davies, Jacob .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2011, 58 (01) :156-167