sl(2, C) as a complex Lie algebra and the associated non-Hermitian Hamiltonians with real eigenvalues

被引:171
作者
Bagchi, B
Quesne, C
机构
[1] Free Univ Brussels, B-1050 Brussels, Belgium
[2] Univ Calcutta, Dept Appl Math, Calcutta 700009, W Bengal, India
关键词
non-Hermitian Hamiltonians; PT symmetry; potential algebras;
D O I
10.1016/S0375-9601(00)00512-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The powerful group theoretical formalism of potential algebras is extended to non-Hermitian Hamiltonians with real eigenvalues by complexifying so(2,1), thereby getting the complex algebra s1(2,C) or A(1). This leads to new types of both PT-symmetric and non-PT-symmetric Hamiltonians. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:285 / 292
页数:8
相关论文
共 22 条
[1]   GROUP-THEORY APPROACH TO SCATTERING .2. THE EUCLIDEAN CONNECTION [J].
ALHASSID, Y ;
GURSEY, F ;
IACHELLO, F .
ANNALS OF PHYSICS, 1986, 167 (01) :181-200
[2]   GROUP-THEORY APPROACH TO SCATTERING [J].
ALHASSID, Y ;
GURSEY, F ;
IACHELLO, F .
ANNALS OF PHYSICS, 1983, 148 (02) :346-380
[3]   SUSY quantum mechanics with complex superpotentials and real energy spectra [J].
Andrianov, AA ;
Ioffe, MV ;
Cannata, F ;
Dedonder, JP .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (17) :2675-2688
[4]   PT-symmetric sextic potentials [J].
Bagchi, B ;
Cannata, F ;
Quesne, C .
PHYSICS LETTERS A, 2000, 269 (2-3) :79-82
[5]   A new PT-symmetric complex Hamiltonian with a real spectrum [J].
Bagchi, B ;
Roychoudhury, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (01) :L1-L3
[6]  
Ballentine L. E., 1998, Quantum Mechanics: A Modern Development
[7]  
Barut A, 1988, DYNAMICAL GROUPS SPE, DOI [10.1142/0299, DOI 10.1142/0299]
[8]   ON NON-COMPACT GROUPS .2. REPRESENTATIONS OF THE 2+1 LORENTZ GROUP [J].
BARUT, AO ;
FRONSDAL, C .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1965, 287 (1411) :532-&
[9]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[10]   Quasi-exactly solvable quartic potential [J].
Bender, CM ;
Boettcher, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (14) :L273-L277