Challenges and Recent Advances in High Capacity Li-Rich Cathode Materials for High Energy Density Lithium-Ion Batteries

被引:294
作者
He, Wei [1 ]
Guo, Weibin [1 ]
Wu, Hualong [1 ]
Lin, Liang [1 ]
Liu, Qun [1 ]
Han, Xiao [1 ]
Xie, Qingshui [1 ]
Liu, Pengfei [1 ]
Zheng, Hongfei [1 ]
Wang, Laisen [1 ]
Yu, Xiqian [2 ]
Peng, Dong-Liang [1 ]
机构
[1] Xiamen Univ, Coll Mat, Collaborat Innovat Ctr Chem Energy Mat,Dept Mat S, State Key Lab Phys Chem Solid Surfaces,Fujian Key, Xiamen 361005, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Xiamen 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
cutting‐ edge technologies; Li‐ rich cathode materials; oxygen anion redox; reliable practicability; voltage fading; LAYERED OXIDE CATHODES; ELECTROCHEMICAL PERFORMANCE; MANGANESE OXIDES; HIGH-VOLTAGE; LOCAL-STRUCTURE; SURFACE MODIFICATION; HOLLOW MICROSPHERES; STRUCTURAL-CHANGES; CYCLING STABILITY; COMPOSITE CATHODE;
D O I
10.1002/adma.202005937
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Li-rich cathode materials have attracted increasing attention because of their high reversible discharge capacity (>250 mA h g(-1)), which originates from transition metal (TM) ion redox reactions and unconventional oxygen anion redox reactions. However, many issues need to be addressed before their practical applications, such as their low kinetic properties and inefficient voltage fading. The development of cutting-edge technologies has led to cognitive advances in theory and offer potential solutions to these problems. Herein, a recent in-depth understanding of the mechanisms and the frontier electrochemical research progress of Li-rich cathodes are reviewed. In addition, recent advances associated with various strategies to promote the performance and the development of modification methods are discussed. In particular, excluding Li-rich Mn-based (LRM) cathodes, other branches of the Li-rich cathode materials are also summarized. The consistent pursuit is to obtain energy storage devices with high capacity, reliable practicability, and absolute safety. The recent literature and ongoing efforts in this area are also described, which will create more opportunities and new ideas for the future development of Li-rich cathode materials.
引用
收藏
页数:35
相关论文
共 196 条
[1]   Nanoscale Zirconium-Abundant Surface Layers on Lithium- and Manganese-Rich Layered Oxides for High-Rate Lithium-Ion Batteries [J].
Ahn, Juhyeon ;
Kim, Jong Hak ;
Cho, Byung Won ;
Chung, Kyung Yoon ;
Kim, Sangryun ;
Choi, Jang Wook ;
Oh, Si Hyoung .
NANO LETTERS, 2017, 17 (12) :7869-7877
[2]   Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries [J].
An, Juan ;
Shi, Liyi ;
Chen, Guorong ;
Li, Musen ;
Liu, Hongjiang ;
Yuan, Shuai ;
Chen, Shimou ;
Zhang, Dengsong .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (37) :19738-19744
[3]   Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 [J].
Armstrong, A. Robert ;
Holzapfel, Michael ;
Novak, Petr ;
Johnson, Christopher S. ;
Kang, Sun-Ho ;
Thackeray, Michael M. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) :8694-8698
[4]   Overcharging manganese oxides:: Extracting lithium beyond Mn4+ [J].
Armstrong, AR ;
Robertson, AD ;
Bruce, PG .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :275-280
[5]   Reining in dissolved transition-metal ions [J].
Asl, Hooman Yaghoobnejad ;
Manthiram, Arumugam .
SCIENCE, 2020, 369 (6500) :140-141
[6]   Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries [J].
Assat, Gaurav ;
Tarascon, Jean-Marie .
NATURE ENERGY, 2018, 3 (05) :373-386
[7]   Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes [J].
Assat, Gaurav ;
Foix, Dominique ;
Delacourt, Charles ;
Iadecola, Antonella ;
Dedryvere, Remi ;
Tarascon, Jean-Marie .
NATURE COMMUNICATIONS, 2017, 8
[8]   Closed-loop optimization of fast-charging protocols for batteries with machine learning [J].
Attia, Peter M. ;
Grover, Aditya ;
Jin, Norman ;
Severson, Kristen A. ;
Markov, Todor M. ;
Liao, Yang-Hung ;
Chen, Michael H. ;
Cheong, Bryan ;
Perkins, Nicholas ;
Yang, Zi ;
Herring, Patrick K. ;
Aykol, Muratahan ;
Harris, Stephen J. ;
Braatz, Richard D. ;
Ermon, Stefano ;
Chueh, William C. .
NATURE, 2020, 578 (7795) :397-+
[9]   Long-Range and Local Structure in the Layered Oxide Li1.2Co0.4Mn0.4O2 [J].
Bareno, J. ;
Balasubramanian, M. ;
Kang, S. H. ;
Wen, J. G. ;
Lei, C. H. ;
Pol, S. V. ;
Petrov, I. ;
Abraham, D. P. .
CHEMISTRY OF MATERIALS, 2011, 23 (08) :2039-2050
[10]   Operando Monitoring of F- Formation in Lithium Ion Batteries [J].
Bolli, Christoph ;
Gueguen, Aurelie ;
Mendez, Manuel A. ;
Berg, Erik J. .
CHEMISTRY OF MATERIALS, 2019, 31 (04) :1258-1267