fast and oblivious algorithms;
convolution quadrature;
wave equations;
boundary integral equations;
retarded potentials;
contour integral methods;
BOUNDARY INTEGRAL-EQUATIONS;
GENERALIZED CONVOLUTION QUADRATURE;
PARABOLIC EQUATIONS;
NUMERICAL-SOLUTION;
APPROXIMATIONS;
MULTISTEP;
D O I:
10.1137/16M1070657
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The use of time-domain boundary integral equations has proved very effective and efficient for three-dimensional acoustic and electromagnetic wave equations. In even dimensions and when some dissipation is present, time-domain boundary equations contain an infinite memory tail. Due to this, computation for longer times becomes exceedingly expensive. In this paper we show how oblivious quadrature, initially designed for parabolic problems, can be used to significantly reduce both the cost and the memory requirements of computing this tail. We analyze Runge Kutta-based quadrature and conclude the paper with numerical experiments.
机构:
Univ Fed Rio de Janeiro, COPPE UFRJ, Programa Engn Civil, BR-21945970 Rio De Janeiro, BrazilUniv Fed Parana, PPGMNE, BR-81531990 Curitiba, Parana, Brazil
Pereira, W. L. A.
Mansur, W. J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, COPPE UFRJ, Programa Engn Civil, BR-21945970 Rio De Janeiro, BrazilUniv Fed Parana, PPGMNE, BR-81531990 Curitiba, Parana, Brazil
机构:
Univ Fed Rio de Janeiro, COPPE UFRJ, Programa Engn Civil, BR-21945970 Rio De Janeiro, BrazilUniv Fed Parana, PPGMNE, BR-81531990 Curitiba, Parana, Brazil
Pereira, W. L. A.
Mansur, W. J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, COPPE UFRJ, Programa Engn Civil, BR-21945970 Rio De Janeiro, BrazilUniv Fed Parana, PPGMNE, BR-81531990 Curitiba, Parana, Brazil