Algorithmic construction of lumps

被引:2
作者
Estevez, P. G. [1 ]
Prada, J. [1 ]
机构
[1] Univ Salamanca, Fac Ciencias, E-37008 Salamanca, Spain
关键词
Lax pair; lump; Painleve property; singular manifold; Darboux transformation;
D O I
10.1007/s11232-007-0060-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the singular manifold method to generate lump solutions of a Schrodinger equation in 2+1 dimensions and present three different types of such solutions.
引用
收藏
页码:744 / 751
页数:8
相关论文
共 13 条
[1]  
Ablowitz MJ, 2004, NATO SCI SER II-MATH, V132, P1
[2]   INTEGRABLE TWO-DIMENSIONAL GENERALIZATION OF THE SINE-GORDON EQUATION AND SINH-GORDON EQUATION [J].
BOITI, M ;
LEON, JJP ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1987, 3 (01) :37-49
[3]   Miura transformation between two non-linear equations in 2+1 dimensions [J].
Cervero, JM ;
Estevez, PG .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (05) :2800-2807
[4]   SOME REDUCTIONS OF THE SELF-DUAL YANG-MILLS EQUATIONS TO INTEGRABLE SYSTEMS IN 2+1-DIMENSIONS [J].
CHAKRAVARTY, S ;
KENT, SL ;
NEWMAN, ET .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (02) :763-772
[5]   Darboux transformation and solutions for an equation in 2+1 dimensions [J].
Estévez, PG .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (03) :1406-1419
[6]  
ESTEVEZ PG, 1997, INVERSE PROBL, V13, P393
[7]   Interaction of lumps with a line soliton for the DSII equation [J].
Fokas, AS ;
Pelinovsky, DE ;
Sulem, C .
PHYSICA D-NONLINEAR PHENOMENA, 2001, 152 :189-198
[8]   ON THE SIMPLEST INTEGRABLE EQUATION IN 2+1 [J].
FOKAS, AS .
INVERSE PROBLEMS, 1994, 10 (02) :L19-L22
[9]   The Kadomtsev-Petviashvili equation as a source of integrable model equations [J].
Maccari, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (12) :6207-6212
[10]   Collisions between spatiotemporal solitons of different dimensionality in a planar waveguide [J].
Nistazakis, HE ;
Frantzeskakis, DJ ;
Malomed, BA .
PHYSICAL REVIEW E, 2001, 64 (02) :8