LP ESTIMATES FOR THE HOMOGENIZATION OF STOKES PROBLEM IN A PERFORATED DOMAIN

被引:3
作者
Mecherbet, Amina [1 ]
Hillairet, Matthieu [1 ]
机构
[1] Univ Montpellier, CNRS, Inst Montpellierain Alexander Grothendieck, Pl Eugene Bataillon, F-34090 Montpellier, France
关键词
Stokes equations; homogenization; suspension flows; EQUATIONS; VLASOV;
D O I
10.1017/S1474748018000014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the Stokes equations in a perforated domain. When the number of holes increases while their radius tends to 0, it is proven in Desvillettes et al. [J. Stat. Phys. 131 (2008) 941{967], under suitable dilution assumptions, that the solution is well approximated asymptotically by solving a Stokes{Brinkman equation. We provide here quantitative estimates in L p -norms of this convergence.
引用
收藏
页码:231 / 258
页数:28
相关论文
共 15 条
  • [1] ALLAIRE G, 1991, ARCH RATION MECH AN, V113, P209, DOI [10.1007/BF00375065, 10.1007/BF00375066]
  • [2] Beliaev AY, 1996, COMMUN PUR APPL MATH, V49, P1, DOI 10.1002/(SICI)1097-0312(199601)49:1<1::AID-CPA1>3.0.CO
  • [3] 2-J
  • [4] Boudin L, 2009, DIFFER INTEGRAL EQU, V22, P1247
  • [5] Cioranescu D., 1982, RES NOTES MATH, V60, P389
  • [6] The mean-field limit for solid particles in a Navier-Stokes flow
    Desvillettes, Laurent
    Golse, Francois
    Ricci, Valeria
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (05) : 941 - 967
  • [7] Galdi GP, 2011, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-09620-9
  • [8] Hamdache K., 1998, Jpn. J. Ind. Appl. Math., V15, P51
  • [9] Hauray M, 2015, ANN SCI ECOLE NORM S, V48, P891
  • [10] HILLAIRET M., 2016, HOMOGENIZATION STOKE