Reproducible Ultrathin Ferroelectric Domain Switching for High-Performance Neuromorphic Computing

被引:227
作者
Li, Jiankun [1 ]
Ge, Chen [1 ,2 ,3 ]
Du, Jianyu [1 ]
Wang, Can [1 ,2 ,4 ]
Yang, Guozhen [1 ]
Jin, Kuijuan [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Minist Educ, Key Lab Polar Mat & Devices, Shanghai 200241, Peoples R China
[4] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
electronic synapses; ferroelectric domain switching; ferroelectric tunnel junctions; neuromorphic computing; ultrathin films; ELECTRORESISTANCE; DEVICE;
D O I
10.1002/adma.201905764
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Neuromorphic computing consisting of artificial synapses and neural network algorithms provides a promising approach for overcoming the inherent limitations of current computing architecture. Developments in electronic devices that can accurately mimic the synaptic plasticity of biological synapses, have promoted the research boom of neuromorphic computing. It is reported that robust ferroelectric tunnel junctions can be employed to design high-performance electronic synapses. These devices show an excellent memristor function with many reproducible states (approximate to 200) through gradual ferroelectric domain switching. Both short- and long-term plasticity can be emulated by finely tuning the applied pulse parameters in the electronic synapse. The analog conductance switching exhibits high linearity and symmetry with small switching variations. A simulated artificial neural network with supervised learning built from these synaptic devices exhibited high classification accuracy (96.4%) for the Mixed National Institute of Standards and Technology (MNIST) handwritten recognition data set.
引用
收藏
页数:9
相关论文
共 39 条
[1]   Equivalent-accuracy accelerated neural-network training using analogue memory [J].
Ambrogio, Stefano ;
Narayanan, Pritish ;
Tsai, Hsinyu ;
Shelby, Robert M. ;
Boybat, Irem ;
di Nolfo, Carmelo ;
Sidler, Severin ;
Giordano, Massimo ;
Bodini, Martina ;
Farinha, Nathan C. P. ;
Killeen, Benjamin ;
Cheng, Christina ;
Jaoudi, Yassine ;
Burr, Geoffrey W. .
NATURE, 2018, 558 (7708) :60-+
[2]  
[Anonymous], INT JOINT C NEUR NET
[3]   Involvement of pre- and postsynaptic mechanisms in posttetanic potentiation at Aplysia synapses [J].
Bao, JX ;
Kandel, ER ;
Hawkins, RD .
SCIENCE, 1997, 275 (5302) :969-973
[4]   Learning through ferroelectric domain dynamics in solid-state synapses [J].
Boyn, Soeren ;
Grollier, Julie ;
Lecerf, Gwendal ;
Xu, Bin ;
Locatelli, Nicolas ;
Fusil, Stephane ;
Girod, Stephanie ;
Carretero, Cecile ;
Garcia, Karin ;
Xavier, Stephane ;
Tomas, Jean ;
Bellaiche, Laurent ;
Bibes, Manuel ;
Barthelemy, Agnes ;
Saighi, Sylvain ;
Garcia, Vincent .
NATURE COMMUNICATIONS, 2017, 8
[5]  
Chanthbouala A, 2012, NAT MATER, V11, P860, DOI [10.1038/NMAT3415, 10.1038/nmat3415]
[6]   SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations [J].
Choi, Shinhyun ;
Tan, Scott H. ;
Li, Zefan ;
Kim, Yunjo ;
Choi, Chanyeol ;
Chen, Pai-Yu ;
Yeon, Hanwool ;
Yu, Shimeng ;
Kim, Jeehwan .
NATURE MATERIALS, 2018, 17 (04) :335-+
[7]   Li-Ion Synaptic Transistor for Low Power Analog Computing [J].
Fuller, Elliot J. ;
El Gabaly, Farid ;
Leonard, Franois ;
Agarwal, Sapan ;
Plimpton, Steven J. ;
Jacobs-Gedrim, Robin B. ;
James, Conrad D. ;
Marinella, Matthew J. ;
Talin, A. Alec .
ADVANCED MATERIALS, 2017, 29 (04)
[8]   Control of Synaptic Plasticity Learning of Ferroelectric Tunnel Memristor by Nanoscale Interface Engineering [J].
Guo, Rui ;
Zhou, Yaxiong ;
Wu, Lijun ;
Wang, Zhuorui ;
Lim, Zhishiuh ;
Yan, Xiaobing ;
Lin, Weinan ;
Wang, Han ;
Yoong, Herng Yau ;
Chen, Shaohai ;
Ariando ;
Venkatesan, Thirumalai ;
Wang, John ;
Chow, Gan Moog ;
Gruverman, Alexei ;
Miao, Xiangshui ;
Zhu, Yimei ;
Chen, Jingsheng .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (15) :12862-12869
[9]   Polymer Analog Memristive Synapse with Atomic-Scale Conductive Filament for Flexible Neuromorphic Computing System [J].
Jang, Byung Chul ;
Kim, Sungkyu ;
Yang, Sang Yoon ;
Park, Jihun ;
Cha, Jun-Hwe ;
Oh, Jungyeop ;
Choi, Junhwan ;
Im, Sung Gap ;
Dravid, Vinayak P. ;
Choi, Sung-Yool .
NANO LETTERS, 2019, 19 (02) :839-849
[10]   Domain switching kinetics in disordered ferroelectric thin films [J].
Jo, J. Y. ;
Han, H. S. ;
Yoon, J. -G. ;
Song, T. K. ;
Kim, S. -H. ;
Noh, T. W. .
PHYSICAL REVIEW LETTERS, 2007, 99 (26)