Ethanol production by modified polyvinyl alcohol-immobilized Zymomonas mobilis and in situ membrane distillation under very high gravity condition

被引:22
作者
Zhang, Quanguo [1 ]
Nurhayati [2 ]
Cheng, Chieh-Lun [2 ]
Lo, Yung-Chung [2 ,3 ]
Nagarajan, Dillirani [5 ]
Hu, Jianjun [1 ]
Chang, Jo-Shu [2 ,3 ]
Lee, Duu-Jong [1 ,4 ,5 ]
机构
[1] Henan Agr Univ, Collaborat Innovat Ctr Biomass Energy, Zhengzhou 450002, Henan, Peoples R China
[2] Natl Cheng Kung Univ, Dept Chem Engn, Tainan 701, Taiwan
[3] Natl Cheng Kung Univ, Res Ctr Energy Technol & Strategy, Tainan 701, Taiwan
[4] Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Taipei 10607, Taiwan
[5] Natl Taiwan Univ, Dept Chem Engn, Taipei 10607, Taiwan
基金
中国国家自然科学基金;
关键词
Bioethanol; Very high gravity fermentation; Membrane distillation; Productivity; BIOETHANOL PRODUCTION; SACCHAROMYCES-CEREVISIAE; CELL REACTOR; FUEL ETHANOL; FERMENTATION; SEPARATION; CHALLENGES; STARCH; WASTE; YEAST;
D O I
10.1016/j.apenergy.2017.05.105
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Concentration of ethanol from the fermentation broth is an energy-intensive process. Very high gravity (VHG) process with modified polyvinyl alcohol-immobilized Zymomonas mobilis cells integrated with in situ bioethanol removal via vacuum membrane distillation (VMD) was proposed to mitigate product inhibition effects in VHG fermentation. The proposed VHG + VMD system, at 300 g/L glucose loading, produced 127.4 g/L (16.1% v/v) ethanol, at 63.7 g/L-h productivity and 84.9% glucose conversion rate, which is the highest in reported literature. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 34 条
  • [1] PRODUCTION OF HIGH ETHANOL CONCENTRATIONS FROM GLUCOSE USING ZYMOMONAS-MOBILIS ENTRAPPED IN A VERTICAL ROTATING IMMOBILIZED CELL REACTOR
    AMIN, G
    DOELLE, HW
    [J]. ENZYME AND MICROBIAL TECHNOLOGY, 1990, 12 (06) : 443 - 446
  • [2] Challenges and opportunities in improving the production of bio-ethanol
    Baeyens, Jan
    Kang, Qian
    Appels, Lise
    Dewil, Raf
    Lv, Yongqin
    Tan, Tianwei
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2015, 47 : 60 - 88
  • [3] Zero thermal input membrane distillation, a zero-waste and sustainable solution for freshwater shortage
    Baghbanzadeh, Mohammadali
    Rana, Dipak
    Lan, Christopher Q.
    Matsuura, Takeshi
    [J]. APPLIED ENERGY, 2017, 187 : 910 - 928
  • [4] Membrane distillation for dilute ethanol - Separation from aqueous streams
    Banat, FA
    Simandl, J
    [J]. JOURNAL OF MEMBRANE SCIENCE, 1999, 163 (02) : 333 - 348
  • [5] Bangrak P, 2011, BRAZ J MICROBIOL, V42, P676, DOI [10.1590/S1517-838220110002000032, 10.1590/S1517-83822011000200032]
  • [6] CONTINUOUS ETHANOL FERMENTATION OF CONCENTRATED SUGAR SOLUTIONS COUPLED WITH MEMBRANE DISTILLATION USING A PTFE MODULE
    CALIBO, RL
    MATSUMURA, M
    KATAOKA, H
    [J]. JOURNAL OF FERMENTATION AND BIOENGINEERING, 1989, 67 (01): : 40 - 45
  • [7] Evaluation of Non-Saccharomyces Yeasts for the Reduction of Alcohol Content in Wine
    Contreras, A.
    Hidalgo, C.
    Henschke, P. A.
    Chambers, P. J.
    Curtin, C.
    Varela, C.
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2014, 80 (05) : 1670 - 1678
  • [8] Economic-energy-environment analysis of prospective sugarcane bioethanol production in Brazil
    de Carvalho, Ariovaldo Lopes
    Antunes, Carlos Henggeler
    Freire, Fausto
    [J]. APPLIED ENERGY, 2016, 181 : 514 - 526
  • [9] D-GLUCOSE TRANSPORT-SYSTEM OF ZYMOMONAS-MOBILIS
    DIMARCO, AA
    ROMANO, AH
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1985, 49 (01) : 151 - 157
  • [10] Bioethanol production from forestry residues: A comparative techno-economic analysis
    Franko, Balazs
    Galbe, Mats
    Wallberg, Ola
    [J]. APPLIED ENERGY, 2016, 184 : 727 - 736