Ru-decorated N-doped carbon nanoflakes for selective hydrogenation of levulinic acid to ?-valerolactone and quinoline to tetrahydroquinoline with HCOOH in water

被引:22
作者
Chauhan, Arzoo [1 ]
Kar, Ashish Kumar [1 ]
Srivastava, Rajendra [1 ]
机构
[1] Indian Inst Technol Ropar, Dept Chem, Catalysis Res Lab, Rupnagar 140001, India
关键词
Biofuel; Hydrogenation; Formic acid; Levulinic acid; -valerolactone; 1,2,3,4-tetrahydroquinoline; HIGHLY EFFICIENT HYDROGENATION; AQUEOUS-PHASE HYDROGENATION; GAMMA-VALEROLACTONE; FORMIC-ACID; REDUCTIVE TRANSFORMATION; RUTHENIUM NANOPARTICLES; CATALYZED HYDROGENATION; CONVERSION; BIOMASS; OXYGEN;
D O I
10.1016/j.apcata.2022.118580
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effective dissociation of biomass-derived formic acid, as a sustainable hydrogen source, in water is explored for the hydrogenation of levulinic acid (LA) and quinoline. Ru decorated carbon nanoflakes prepared by car-boreduction (in Ar/H-2 atmosphere) of Ru containing N-doped carbon were used as catalysts. The successful formation of Ru-decorated N-doped carbons was confirmed by numerous spectroscopic tools. The catalyst exhibited outstanding activity and selectivity for the hydrogenation of LA and quinoline using formic acid as a hydrogen donor in water under mild conditions. The catalyst afforded 99.8% LA conversion and 100% selectivity for gamma-valerolactone (GVL), whereas 99.8% quinoline conversion and 93% selectivity for 1,2,3,4-tetrahydroquino-line (THQ) were obtained. Recycling experiments suggested that the catalyst was stable even after the 5 cycles. Various controlled experiments and characterizations were conducted to demonstrate the structure-activity relations and suggest plausible reaction mechanisms for the hydrogenation of LA and quinoline. The exploration of formic acid as a sustainable H-2 source and the development of metal decorated N-doped carbons for hydrogenation of LA and quinoline will be fascinating to catalysis researchers and industrialists.
引用
收藏
页数:11
相关论文
共 75 条
[1]   Analysis of Kinetics and Reaction Pathways in the Aqueous-Phase Hydrogenation of Levulinic Acid To Form γ-Valerolactone over Ru/C [J].
Abdelrahman, Omar Ali ;
Heyden, Andreas ;
Bond, Jesse Q. .
ACS CATALYSIS, 2014, 4 (04) :1171-1181
[2]   Role of water in formic acid decomposition [J].
Akiya, N ;
Savage, PE .
AICHE JOURNAL, 1998, 44 (02) :405-415
[3]   Exploring the ruthenium catalysed synthesis of γ-valerolactone in alcohols and utilisation of mild solvent-free reaction conditions [J].
Al-Shaal, Mohammad G. ;
Wright, William R. H. ;
Palkovits, Regina .
GREEN CHEMISTRY, 2012, 14 (05) :1260-1263
[4]   Pd-Ru/TiO2 catalyst - an active and selective catalyst for furfural hydrogenation [J].
Aldosari, Obaid F. ;
Iqbal, Sarwat ;
Miedziak, Peter J. ;
Brett, Gemma L. ;
Jones, Daniel R. ;
Liu, Xi ;
Edwards, Jennifer K. ;
Morgan, David J. ;
Knight, David K. ;
Hutchings, Graham J. .
CATALYSIS SCIENCE & TECHNOLOGY, 2016, 6 (01) :234-242
[5]   AN XPS STUDY ON RUTHENIUM COMPOUNDS AND CATALYSTS [J].
BIANCHI, CL ;
RAGAINI, V ;
CATTANIA, MG .
MATERIALS CHEMISTRY AND PHYSICS, 1991, 29 (1-4) :297-306
[6]   Reaction Kinetics of Vanillin Hydrogenation in Aqueous Solutions Using a Ru/C Catalyst [J].
Bindwal, Ankush B. ;
Vaidya, Prakash D. .
ENERGY & FUELS, 2014, 28 (05) :3357-3362
[7]   Selective hydrogenation for fine chemicals: Recent trends and new developments [J].
Blaser, HU ;
Malan, C ;
Pugin, B ;
Spindler, F ;
Steiner, H ;
Studer, M .
ADVANCED SYNTHESIS & CATALYSIS, 2003, 345 (1-2) :103-151
[8]   Integrated Catalytic Conversion of γ-Valerolactone to Liquid Alkenes for Transportation Fuels [J].
Bond, Jesse Q. ;
Alonso, David Martin ;
Wang, Dong ;
West, Ryan M. ;
Dumesic, James A. .
SCIENCE, 2010, 327 (5969) :1110-1114
[9]   Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "Top 10" revisited [J].
Bozell, Joseph J. ;
Petersen, Gene R. .
GREEN CHEMISTRY, 2010, 12 (04) :539-554
[10]   XPS STUDIES OF THE OXYGEN-1S AND OXYGEN-2S LEVELS IN A WIDE-RANGE OF FUNCTIONAL POLYMERS [J].
BRIGGS, D ;
BEAMSON, G .
ANALYTICAL CHEMISTRY, 1993, 65 (11) :1517-1523