p-parabolic Approximation of Total Variation Flow Solutions

被引:4
作者
Gianazza, Ugo [1 ]
Klaus, Colin [2 ]
机构
[1] Univ Pavia, Dipartimento Matemat F Casorati, Via Ferrata 1, I-27100 Pavia, Italy
[2] Ohio State Univ, Math Biosci Inst, Jennings Hall,3rd Floor,1735 Neil Ave, Columbus, OH 43210 USA
关键词
Parabolic variational integral; parabolic p-Laplacian; total variation flow Cauchy-Dirichlet problem; EXISTENCE;
D O I
10.1512/iumj.2019.68.7773
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that variational solutions to the Cauchy-Dirichlet problem for the total variation flow can be built as the limit of variational solutions to the same problem for the parabolic p-Laplacian.
引用
收藏
页码:1519 / 1550
页数:32
相关论文
共 27 条
[1]   The Dirichlet problem for the total variation flow [J].
Andreu, F ;
Ballester, C ;
Caselles, V ;
Mazón, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 180 (02) :347-403
[2]  
Andreu-Vaillo F., 2004, Parabolic quasilinear equations minimizing linear growth functionals, DOI [10.1007/978-3-0348-7928-6, DOI 10.1007/978-3-0348-7928-6]
[3]  
[Anonymous], 2000, OXFORD MATH MONOGR
[4]  
ANZELLOTTI G, 1983, ANN MAT PUR APPL, V135, P294
[5]  
Anzellotti G., 1979, (Italian). Rend. Sem. Mat. Univ. Padova, V60, P1
[6]   The total variation flow in RN [J].
Bellettini, G ;
Caselles, V ;
Novaga, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (02) :475-525
[7]   The total variation flow with time dependent boundary values [J].
Boegelein, Verena ;
Duzaar, Frank ;
Scheven, Christoph .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (04)
[8]   Existence of evolutionary variational solutions via the calculus of variations [J].
Boegelein, Verena ;
Duzaar, Frank ;
Marcellini, Paolo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (12) :3912-3942
[9]   A Time Dependent Variational Approach to Image Restoration [J].
Bogelein, Verena ;
Duzaar, Frank ;
Marcellini, Paolo .
SIAM JOURNAL ON IMAGING SCIENCES, 2015, 8 (02) :968-1006
[10]  
DIBENEDETTO E., 2016, Birkhauser Adv. Texts: Basel Textbooks, Vsecond, DOI [10.1007/978-1-4939-4005-9, DOI 10.1007/978-1-4939-4005-9]