Levy Processes and Infinitely Divisible Measures in the Dual of a Nuclear Space

被引:8
作者
Fonseca-Mora, C. A. [1 ]
机构
[1] Univ Costa Rica, Escuela Matemat, San Jose 115012060, Costa Rica
关键词
Levy processes; Infinitely divisible measures; Cylindrical Levy processes; Dual of a nuclear space; Levy-Ito decomposition; Levy-Khintchine formula; Levy measure; PROBABILITY-MEASURES; STOCHASTIC INTEGRATION; ADDITIVE PROCESSES; VECTOR-SPACES; LAWS; SUPPORT;
D O I
10.1007/s10959-019-00972-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let Phi be a nuclear space and let Phi'(beta) denote its strong dual. In this work, we prove the existence of cadlag versions, the Levy-Ito decomposition and the Levy-Khintchine formula for Phi'(beta)-valued Levy processes. Moreover, we give a characterization for Levy measures on Phi'(beta) and provide conditions for the existence of regular versions to cylindrical Levy processes in Phi'. Furthermore, under the assumption that Phi is a barrelled nuclear space we establish a one-to-one correspondence between infinitely divisible measures on Phi'(beta) and Levy processes in Phi'(beta). Finally, we prove the Levy-Khintchine formula for infinitely divisible measures on Phi'(beta).
引用
收藏
页码:649 / 691
页数:43
相关论文
共 48 条
[31]  
Parthasarathy K.R., 1967, PROBABILITY MEASURES
[32]   Representation of infinitely divisible distributions on cones [J].
Perez-Abreu, Victor ;
Rosinski, Jan .
JOURNAL OF THEORETICAL PROBABILITY, 2007, 20 (03) :535-544
[33]   Cone-additive processes in duals of nuclear Frechet spaces [J].
Perez-Abreu, Victor ;
Rocha-Arteaga, Alfonso ;
Tudor, Constantin .
RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2005, 13 (04) :353-368
[35]  
Rao M.M., 1995, Stochastic Processes
[36]   Stochastic integration for Levy processes with values in Banach spaces [J].
Riedle, Markus ;
van Gaans, Onno .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (06) :1952-1974
[37]  
Sato Ken-iti, 1999, Cambridge Studies in Advanced Mathematics, DOI DOI 10.1016/j.jcp.2006.05.030
[38]  
Schwartz L., 1973, RADON MEASURES ARBIT
[39]  
Schwartz L., 1977, ANN I FOURIER GRENOB, V27, P211, DOI DOI 10.5802/AIF.668
[40]   CONVERGENCE AND CONVOLUTIONS OF PROBABILITY MEASURES ON A TOPOLOGICAL GROUP [J].
SIEBERT, E .
ANNALS OF PROBABILITY, 1976, 4 (03) :433-443