Levy Processes and Infinitely Divisible Measures in the Dual of a Nuclear Space

被引:8
作者
Fonseca-Mora, C. A. [1 ]
机构
[1] Univ Costa Rica, Escuela Matemat, San Jose 115012060, Costa Rica
关键词
Levy processes; Infinitely divisible measures; Cylindrical Levy processes; Dual of a nuclear space; Levy-Ito decomposition; Levy-Khintchine formula; Levy measure; PROBABILITY-MEASURES; STOCHASTIC INTEGRATION; ADDITIVE PROCESSES; VECTOR-SPACES; LAWS; SUPPORT;
D O I
10.1007/s10959-019-00972-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let Phi be a nuclear space and let Phi'(beta) denote its strong dual. In this work, we prove the existence of cadlag versions, the Levy-Ito decomposition and the Levy-Khintchine formula for Phi'(beta)-valued Levy processes. Moreover, we give a characterization for Levy measures on Phi'(beta) and provide conditions for the existence of regular versions to cylindrical Levy processes in Phi'. Furthermore, under the assumption that Phi is a barrelled nuclear space we establish a one-to-one correspondence between infinitely divisible measures on Phi'(beta) and Levy processes in Phi'(beta). Finally, we prove the Levy-Khintchine formula for infinitely divisible measures on Phi'(beta).
引用
收藏
页码:649 / 691
页数:43
相关论文
共 48 条
[21]   Stochastic integration and stochastic PDEs driven by jumps on the dual of a nuclear space [J].
Fonseca-Mora, C. A. .
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2018, 6 (04) :618-689
[22]   Existence of Continuous and Cadlag Versions for Cylindrical Processes in the Dual of a Nuclear Space [J].
Fonseca-Mora, C. A. .
JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (02) :867-894
[23]  
Fonseca-Mora C.A, ARXIV190203981
[24]  
Fonseca-Mora C.A, 2015, THESIS
[25]  
Fonseca-Mora C.A, STUDIA MATH
[26]  
Ito K, 1984, FDN STOCHASTIC EQUAT
[27]  
Jarchow H., 1981, LOCALLY CONVEX SPACE, DOI [10.1007/978-3-322-90559-8, DOI 10.1007/978-3-322-90559-8]
[28]  
KALLIANPUR G, 1995, LECT NOTES MONOGRAPH
[29]  
Medvegyev P., 2007, Stochastic Integration Theory
[30]  
Narici L., 2011, Topological vector spaces, V2nd