Modeling Statistic Distributions for Nonparametric Goodness-of-Fit Criteria for Testing Complex Hypotheses with Respect to the Inverse Gaussian Law

被引:6
|
作者
Lemeshko, B. Yu. [1 ]
Lemeshko, S. B. [1 ]
Nikulin, M. S. [2 ]
Saaidia, N. [2 ]
机构
[1] Novosibirsk State Tech Univ, Novosibirsk, Russia
[2] Victor Segalen Univ Bordeaux 2, Bordeaux, France
基金
俄罗斯基础研究基金会;
关键词
KOLMOGOROV-SMIRNOV TEST; PARAMETERS; NORMALITY; MISES;
D O I
10.1134/S000511791007009X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We give percentage point tables and statistic distribution models for non-parametric goodness-of-fit criteria for testing complex hypothesis with respect to the inverse Gaussian law in case of using maximal likelihood estimates.
引用
收藏
页码:1358 / 1373
页数:16
相关论文
共 2 条