Transposable elements modulate human RNA abundance and splicing via specific RNA-protein interactions

被引:64
|
作者
Kelley, David R. [1 ,2 ]
Hendrickson, David G. [1 ,2 ]
Tenen, Danielle [1 ,2 ]
Rinn, John L. [1 ,2 ,3 ]
机构
[1] Harvard Univ, Dept Stem Cell & Regenerat Biol, Cambridge, MA 02138 USA
[2] MIT, Broad Inst, Cambridge, MA 02142 USA
[3] Beth Israel Deaconess Med Ctr, Boston, MA 02215 USA
来源
GENOME BIOLOGY | 2014年 / 15卷 / 12期
关键词
LONG NONCODING RNAS; BINDING PROTEIN; EVOLUTION; TRANSCRIPTOME; DNA; TRANSLATION; SUPPRESSOR; NETWORKS; GENOMICS; TARGETS;
D O I
10.1186/s13059-014-0537-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Transposable elements (TEs) have significantly influenced the evolution of transcriptional regulatory networks in the human genome. Post-transcriptional regulation of human genes by TE-derived sequences has been observed in specific contexts, but has yet to be systematically and comprehensively investigated. Here, we study a collection of 75 CLIP-Seq experiments mapping the RNA binding sites for a diverse set of 51 human proteins to explore the role of TEs in post-transcriptional regulation of human mRNAs and lncRNAs via RNA-protein interactions. Results: We detect widespread interactions between RNA binding proteins (RBPs) and many families of TE-derived sequence in the CLIP-Seq data. Further, alignment coverage peaks on specific positions of the TE consensus sequences, illuminating a diversity of TE-specific RBP binding motifs. Evidence of binding and conservation of these motifs in the nonrepetitive transcriptome suggests that TEs have generally appropriated existing sequence preferences of the RBPs. Depletion assays for numerous RBPs show that TE-derived binding sites affect transcript abundance and splicing similarly to nonrepetitive sites. However, in a few cases the effect of RBP binding depends on the specific TE family bound; for example, the ubiquitously expressed RBP HuR confers transcript stability unless bound to an Alu element. Conclusions: Our meta-analysis suggests a widespread role for TEs in shaping RNA-protein regulatory networks in the human genome.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Kinetics of RNA-protein interactions in cells
    Sharma, Deepak
    Licatalosi, Donny D.
    Jankowsky, Eckhard
    TRENDS IN BIOCHEMICAL SCIENCES, 2021, 46 (10) : 861 - 862
  • [32] Transient DNA/RNA-protein interactions
    Blanco, Francisco J.
    Montoya, Guillermo
    FEBS JOURNAL, 2011, 278 (10) : 1643 - 1650
  • [33] A Global View of RNA-Protein Interactions
    不详
    CELL, 2012, 149 (07) : 1415 - 1415
  • [34] RNA-protein interactions in an unstructured context
    Zagrovic, Bojan
    Bartonek, Lukas
    Polyansky, Anton A.
    FEBS LETTERS, 2018, 592 (17): : 2901 - 2916
  • [35] RNA-protein interactions in spherical viruses
    Bink, HHJ
    Pleij, CWA
    ARCHIVES OF VIROLOGY, 2002, 147 (12) : 2261 - 2279
  • [36] Methods to study the RNA-protein interactions
    Popova, V. V.
    Kurshakova, M. M.
    Kopytova, D. V.
    MOLECULAR BIOLOGY, 2015, 49 (03) : 418 - 426
  • [37] Testing ancient RNA-protein interactions
    Landweber, LF
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) : 11067 - 11068
  • [38] Thermodynamics and mutations in RNA-protein interactions
    Hall, KB
    Kranz, JK
    ENERGETICS OF BIOLOGICAL MACROMOLECULES, 1995, 259 : 261 - 281
  • [39] Specificity and nonspecificity in RNA-protein interactions
    Jankowsky, Eckhard
    Harris, Michael E.
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2015, 16 (09) : 533 - 544
  • [40] Classification and function of RNA-protein interactions
    Liu, Shurong
    Li, Bin
    Liang, Qiaoxia
    Liu, Anrui
    Qu, Lianghu
    Yang, Jianhua
    WILEY INTERDISCIPLINARY REVIEWS-RNA, 2020, 11 (06)