Zero-Hopf bifurcation in a Chua system

被引:21
作者
Euzebio, Rodrigo D. [1 ,2 ]
Llibre, Jaume [2 ]
机构
[1] UNESP, IBILCE, Dept Matemat, Rua Cristovao Colombo 2265, BR-1505400 Sao Jose De Rio Preto, SP, Brazil
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
基金
巴西圣保罗研究基金会;
关键词
Chua system; Periodic orbit; Averaging theory; Zero Hopf bifurcation; ANALYTIC UNFOLDINGS; SINGULARITY; CIRCUIT; SYNCHRONIZATION; DEGENERACIES; EQUATION; ORBITS; CHAOS;
D O I
10.1016/j.nonrwa.2017.02.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A zero-Hopf equilibrium is an isolated equilibrium point whose eigenvalues are +/- wi, not equal 0 and 0. In general for a such equilibrium there is no theory for knowing when it bifurcates some small-amplitude limit cycles moving the parameters of the system. Here we study the zero-Hopf bifurcation using the averaging theory. We apply this theory to a Chua system depending on 6 parameters, but the way followed for studying the zero-Hopf bifurcation can be applied to any other differential system in dimension 3 or higher. In this paper first we show that there are three 4-parameter families of Chua systems exhibiting a zero-Hopf equilibrium. After, by using the averaging theory, we provide sufficient conditions for the bifurcation of limit cycles from these families of zero-Hopf equilibria. From one family we can prove that 1 limit cycle bifurcates, and from the other two families we can prove that 1, 2 or 3 limit cycles bifurcate simultaneously. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:31 / 40
页数:10
相关论文
共 34 条
  • [1] Adams W.W., 1994, AM MATH SOC, V3
  • [2] Hypernormal form for the Hopf-zero bifurcation
    Algaba, A
    Freire, E
    Gamero, E
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (10): : 1857 - 1887
  • [3] HOPF BIFURCATIONS AND THEIR DEGENERACIES IN CHUA'S EQUATION
    Algaba, Antonio
    Merino, Manuel
    Fernandez-Sanchez, Fernando
    Rodriguez-Luis, Alejandro J.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (09): : 2749 - 2763
  • [4] [Anonymous], 2004, ELEMENTS APPL BIFURC
  • [5] [Anonymous], 1993, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, DOI DOI 10.1103/PhysRevE.69.022901
  • [6] Appleton E.V., 1922, LONDON EDINBURGH DUB, V6, P177
  • [7] Baldomá I, 2008, DISCRETE CONT DYN-B, V10, P323
  • [8] Breakdown of heteroclinic orbits for some analytic unfoldings of the Hopf-zero singularity
    Baldoma, I.
    Seara, T. M.
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2006, 16 (06) : 543 - 582
  • [9] Bogoliubov N.N., 1945, IZV AKAD NAUK UKRAIN
  • [10] Bogoliubov N.N., 1934, UKRAINIAN ACAD SIC K