Complete sets of logarithmic vector fields for integration-by-parts identities of Feynman integrals

被引:42
作者
Boehm, Janko [1 ]
Georgoudis, Alessandro [2 ]
Larsen, Kasper J. [3 ]
Schulze, Mathias [1 ]
Zhang, Yang [4 ,5 ]
机构
[1] TU Kaiserslautern, Dept Math, D-67663 Kaiserslautern, Germany
[2] Uppsala Univ, Dept Phys & Astron, SE-75108 Uppsala, Sweden
[3] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England
[4] Swiss Fed Inst Technol, Wolfang Pauli Str 27, CH-8093 Zurich, Switzerland
[5] Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, D-55128 Mainz, Germany
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
DIFFERENTIAL-EQUATIONS;
D O I
10.1103/PhysRevD.98.025023
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Integration-by-parts identities between loop integrals arise from the vanishing integration of total derivatives in dimensional regularization. Generic choices of total derivatives in the Baikov or parametric representations lead to identities which involve dimension shifts. These dimension shifts can be avoided by imposing a certain constraint on the total derivatives. The solutions of this constraint turn out to be a specific type of syzygies which correspond to logarithmic vector fields along the Gram determinant formed of the independent external and loop momenta. We present an explicit generating set of solutions in Baikov representation, valid for any number of loops and external momenta, obtained from the Laplace expansion of the Gram determinant. We provide a rigorous mathematical proof that this set of solutions is complete. This proof relates the logarithmic vector fields in question to ideals of submaximal minors of the Gram matrix and makes use of classical resolutions of such ideals.
引用
收藏
页数:13
相关论文
共 43 条
  • [1] Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra
    Ablinger, J.
    Behring, A.
    Bluemlein, J.
    De Freitas, A.
    von Manteuffel, A.
    Schneider, C.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2016, 202 : 33 - 112
  • [2] Planar two-loop five-gluon amplitudes from numerical unitarity
    Abreu, S.
    Cordero, F. Febres
    Ita, H.
    Page, B.
    Zeng, M.
    [J]. PHYSICAL REVIEW D, 2018, 97 (11)
  • [3] Anastasiou C, 2004, J HIGH ENERGY PHYS
  • [4] [Anonymous], 1998, USING ALGEBRAIC GEOM, DOI DOI 10.1007/978-1-4757-6911-1
  • [5] [Anonymous], ARXIV12122685
  • [6] First Look at Two-Loop Five-Gluon Scattering in QCD
    Badger, Simon
    Bronnum-Hansen, Christian
    Hartanto, Heribertus Bayu
    Peraro, Tiziano
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (09)
  • [7] Explicit solutions of the 3-loop vacuum integral recurrence relations
    Baikov, PA
    [J]. PHYSICS LETTERS B, 1996, 385 (1-4) : 404 - 410
  • [8] DIMENSIONALLY-REGULATED PENTAGON INTEGRALS
    BERN, Z
    DIXON, L
    KOSOWER, DA
    [J]. NUCLEAR PHYSICS B, 1994, 412 (03) : 751 - 816
  • [9] Dual conformal symmetry, integration-by-parts reduction, differential equations, and the nonplanar sector
    Bern, Zvi
    Enciso, Michael
    Ita, Harald
    Zeng, Mao
    [J]. PHYSICAL REVIEW D, 2017, 96 (09)
  • [10] Bitoun T., ARXIV171209215