Personalized Survival Prediction of Patients With Acute Myeloblastic Leukemia Using Gene Expression Profiling

被引:20
作者
Mosquera Orgueira, Adrian [1 ,2 ,3 ]
Peleteiro Raindo, Andres [1 ,2 ,3 ]
Cid Lopez, Miguel [1 ,2 ,3 ]
Diaz Arias, Jose angel [1 ,2 ]
Gonzalez Perez, Marta Sonia [1 ,2 ]
Antelo Rodriguez, Beatriz [1 ,2 ,3 ]
Alonso Vence, Natalia [1 ,2 ,3 ]
Bao Perez, Laura [1 ,2 ,3 ]
Ferreiro Ferro, Roi [1 ,2 ]
Albors Ferreiro, Manuel [1 ,2 ]
Abuin Blanco, Aitor [1 ,2 ]
Fontanes Trabazo, Emilia [1 ,2 ]
Cerchione, Claudio [4 ]
Martinnelli, Giovanni [4 ]
Montesinos Fernandez, Pau [5 ]
Mateo Perez Encinas, Manuel [1 ,2 ,3 ]
Luis Bello Lopez, Jose [1 ,2 ,3 ]
机构
[1] Univ Hosp Santiago De Compostela SERGAS, Dept Hematol, Santiago De Compostela, Spain
[2] Hlth Res Inst Santiago De Compostela, Grp Invest Sindromes Linfoprolifer, Santiago De Compostela, Spain
[3] Univ Santiago de Compostela, Dept Med, Santiago De Compostela, Spain
[4] Ist Tumori Romagna IRST IRCCS, Hematol Unit, Meldola, Italy
[5] Hosp Univ & Politecn La Fe, Dept Hematol, Valencia, Spain
关键词
acute myeloid leukemia; cancer; survival; machine learning; gene expression; prognosis;
D O I
10.3389/fonc.2021.657191
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Acute Myeloid Leukemia (AML) is a heterogeneous neoplasm characterized by cytogenetic and molecular alterations that drive patient prognosis. Currently established risk stratification guidelines show a moderate predictive accuracy, and newer tools that integrate multiple molecular variables have proven to provide better results. In this report, we aimed to create a new machine learning model of AML survival using gene expression data. We used gene expression data from two publicly available cohorts in order to create and validate a random forest predictor of survival, which we named ST-123. The most important variables in the model were age and the expression of KDM5B and LAPTM4B, two genes previously associated with the biology and prognostication of myeloid neoplasms. This classifier achieved high concordance indexes in the training and validation sets (0.7228 and 0.6988, respectively), and predictions were particularly accurate in patients at the highest risk of death. Additionally, ST-123 provided significant prognostic improvements in patients with high-risk mutations. Our results indicate that survival of patients with AML can be predicted to a great extent by applying machine learning tools to transcriptomic data, and that such predictions are particularly precise among patients with high-risk mutations.
引用
收藏
页数:6
相关论文
共 20 条
[1]   Predicting risk for adverse health events using random forest [J].
Cafri, Guy ;
Li, Luo ;
Paxton, Elizabeth W. ;
Fan, Juanjuan .
JOURNAL OF APPLIED STATISTICS, 2018, 45 (12) :2279-2294
[2]   Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia [J].
DiNardo, Courtney D. ;
Pratz, Keith ;
Pullarkat, Vinod ;
Jonas, Brian A. ;
Arellano, Martha ;
Becker, Pamela S. ;
Frankfurt, Olga ;
Konopleva, Marina ;
Wei, Andrew H. ;
Kantarjian, Hagop M. ;
Xu, Tu ;
Hong, Wan-Jen ;
Chyla, Brenda ;
Potluri, Jalaja ;
Pollyea, Daniel A. ;
Letai, Anthony .
BLOOD, 2019, 133 (01) :7-17
[3]   Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel [J].
Doehner, Hartmut ;
Estey, Elihu ;
Grimwade, David ;
Amadori, Sergio ;
Appelbaum, Frederick R. ;
Buechner, Thomas ;
Dombret, Herve ;
Ebert, Benjamin L. ;
Fenaux, Pierre ;
Larson, Richard A. ;
Levine, Ross L. ;
Lo-Coco, Francesco ;
Naoe, Tomoki ;
Niederwieser, Dietger ;
Ossenkoppele, Gert J. ;
Sanz, Miguel ;
Sierra, Jorge ;
Tallman, Martin S. ;
Tien, Hwei-Fang ;
Wei, Andrew H. ;
Lowenberg, Bob ;
Bloomfield, Clara D. .
BLOOD, 2017, 129 (04) :424-447
[4]   Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet [J].
Doehner, Hartmut ;
Estey, Elihu H. ;
Amadori, Sergio ;
Appelbaum, Frederick R. ;
Buechner, Thomas ;
Burnett, Alan K. ;
Dombret, Herve ;
Fenaux, Pierre ;
Grimwade, David ;
Larson, Richard A. ;
Lo-Coco, Francesco ;
Naoe, Tomoki ;
Niederwieser, Dietger ;
Ossenkoppele, Gert J. ;
Sanz, Miguel A. ;
Sierra, Jorge ;
Tallman, Martin S. ;
Loewenberg, Bob ;
Bloomfield, Clara D. .
BLOOD, 2010, 115 (03) :453-474
[5]  
Dong XS, 2017, J NEURO-ONCOL, V132, P295, DOI 10.1007/s11060-017-2369-0
[6]   Targeting histone demethylase KDM5B for cancer treatment [J].
Fu, Yun-Dong ;
Huang, Ming-Jie ;
Guo, Jia-Wen ;
You, Ya-Zhen ;
Liu, Hong-Min ;
Huang, Li-Hua ;
Yu, Bin .
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2020, 208
[7]   Precision oncology for acute myeloid leukemia using a knowledge bank approach [J].
Gerstung, Moritz ;
Papaemmanuil, Elli ;
Martincorena, Inigo ;
Bullinger, Lars ;
Gaidzik, Verena I. ;
Paschka, Peter ;
Heuser, Michael ;
Thol, Felicitas ;
Bolli, Niccolo ;
Ganly, Peter ;
Ganser, Arnold ;
McDermott, Ultan ;
Dohner, Konstanze ;
Schlenk, Richard F. ;
Dohner, Hartmut ;
Campbell, Peter J. .
NATURE GENETICS, 2017, 49 (03) :332-340
[8]   Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes [J].
Gerstung, Moritz ;
Pellagatti, Andrea ;
Malcovati, Luca ;
Giagounidis, Aristoteles ;
Della Porta, Matteo G. ;
Jaedersten, Martin ;
Dolatshad, Hamid ;
Verma, Amit ;
Cross, Nicholas C. P. ;
Vyas, Paresh ;
Killick, Sally ;
Hellstroem-Lindberg, Eva ;
Cazzola, Mario ;
Papaemmanuil, Elli ;
Campbell, Peter J. ;
Boultwood, Jacqueline .
NATURE COMMUNICATIONS, 2015, 6
[9]   RANDOM SURVIVAL FORESTS [J].
Ishwaran, Hemant ;
Kogalur, Udaya B. ;
Blackstone, Eugene H. ;
Lauer, Michael S. .
ANNALS OF APPLIED STATISTICS, 2008, 2 (03) :841-860
[10]   Identification of a 24-Gene Prognostic Signature That Improves the European LeukemiaNet Risk Classification of Acute Myeloid Leukemia: An International Collaborative Study [J].
Li, Zejuan ;
Herold, Tobias ;
He, Chunjiang ;
Valk, Peter J. M. ;
Chen, Ping ;
Jurinovic, Vindi ;
Mansmann, Ulrich ;
Radmacher, Michael D. ;
Maharry, Kati S. ;
Sun, Miao ;
Yang, Xinan ;
Huang, Hao ;
Jiang, Xi ;
Sauerland, Maria-Cristina ;
Buechner, Thomas ;
Hiddemann, Wolfgang ;
Elkahloun, Abdel ;
Neilly, Mary Beth ;
Zhang, Yanming ;
Larson, Richard A. ;
Le Beau, Michelle M. ;
Caligiuri, Michael A. ;
Doehner, Konstanze ;
Bullinger, Lars ;
Liu, Paul P. ;
Delwel, Ruud ;
Marcucci, Guido ;
Lowenberg, Bob ;
Bloomfield, Clara D. ;
Rowley, Janet D. ;
Bohlander, Stefan K. ;
Chen, Jianjun .
JOURNAL OF CLINICAL ONCOLOGY, 2013, 31 (09) :1172-1181