Friction stir processing of austenitic stainless steel cold spray coating deposited on 304L stainless steel substrate: feasibility study

被引:13
作者
Perard, Thomas [1 ]
Sova, Alexey [1 ]
Robe, Hugo [2 ]
Robin, Vincent [3 ]
Zedan, Yasser [4 ]
Bocher, Philippe [4 ]
Feulvarch, Eric [1 ]
机构
[1] Univ Lyon, Natl Engn Sch St Etienne ENISE, LTDS, UMR 5513 CNRS, 58 Rue Jean Parot, F-42023 St Etienne 2, France
[2] Inst Soudure, 4 Rue Pilatre de Rozier, F-57420 Goin, France
[3] EDF R&D, 6 Quai Watier, F-78400 Chatou, France
[4] Ecole Technol Super ETS, Mech Engn Dept, 1100 Rue Notre Dame Ouest, Montreal, PQ, Canada
关键词
Friction stir processing; Cold spray; Stainless steel; Microstructure; METAL-MATRIX COMPOSITES; MECHANICAL-PROPERTIES; MICROSTRUCTURE EVOLUTION; BIOMEDICAL APPLICATIONS; CORROSION-RESISTANCE; EROSION PERFORMANCE; HEAT-TREATMENT; GAS; ALLOY; OPTIMIZATION;
D O I
10.1007/s00170-021-07295-w
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, the feasibility test of friction stir processing (FSP) of 1.5-mm-thick austenitic stainless steel cold spray coating deposited on 304L stainless steel substrate was performed using tungsten carbide tool. Applied FSP parameters (advance speed 50 mm/min, rotation speed 300 rpm, axial force 20 kN, tilt angle 1.5 degrees) allowed to perform FSP treatment with a higher depth than the coating thickness. As a result, the material mixing at the coating-substrate interface was observed. The microstructure observation revealed that the coating microstructure in the stir zone was significantly modified. EBSD analysis confirmed that full material recrystallization during FSP allowed the formation of dense and uniform fine-grained structure with the mean grain size of 1.9 mm. Average coating microhardness was decreased from 406 to 299 HV. Further FSP parameter optimization should be carried out in order to improve the process reliability and avoid any coating failure during treatment.
引用
收藏
页码:2379 / 2393
页数:15
相关论文
共 60 条
[1]   Effect of Cold-Spray Conditions Using a Nitrogen Propellant Gas on AISI 316L Stainless Steel-Coating Microstructures [J].
Adachi, Shinichiro ;
Ueda, Nobuhiro .
COATINGS, 2017, 7 (07)
[2]   Effect of Heat Treatment on the Microstructure and Mechanical Properties of Stainless Steel 316L Coatings Produced by Cold Spray for Biomedical Applications [J].
AL-Mangour, Bandar ;
Phuong Vo ;
Mongrain, Rosaire ;
Irissou, Eric ;
Yue, Stephen .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2014, 23 (04) :641-652
[3]   Improving the strength and corrosion resistance of 316L stainless steel for biomedical applications using cold spray [J].
AL-Mangour, Bandar ;
Mongrain, Rosaire ;
Irissou, Eric ;
Yue, Stephen .
SURFACE & COATINGS TECHNOLOGY, 2013, 216 :297-307
[4]  
AlMangour B., 2018, Cold-Spray Coatings: Recent Trends and Future perspectives, P3, DOI DOI 10.1007/978-3-319-67183-3_1
[5]  
[Anonymous], 2015, VILAFUERTE MODERN CO, DOI [10.1007/978-3-319-16772-5, DOI 10.1007/978-3-319-16772-5]
[6]   Cold spraying - A materials perspective [J].
Assadi, H. ;
Kreye, H. ;
Gaertner, F. ;
Klassen, T. .
ACTA MATERIALIA, 2016, 116 :382-407
[7]   The connections between powder variability and coating microstructures for cold spray deposition of austenitic stainless steel [J].
Brewer, L. N. ;
Schiel, J. F. ;
Menon, E. S. K. ;
Woo, D. J. .
SURFACE & COATINGS TECHNOLOGY, 2018, 334 :50-60
[8]   Critical Assessment 11: Structural repairs by cold spray [J].
Champagne, V. ;
Helfritch, D. .
MATERIALS SCIENCE AND TECHNOLOGY, 2015, 31 (06) :627-634
[9]   Wear and Corrosion Properties of 316L-SiC Composite Coating Deposited by Cold Spray on Magnesium Alloy [J].
Chen, Jie ;
Ma, Bing ;
Liu, Guang ;
Song, Hui ;
Wu, Jinming ;
Cui, Lang ;
Zheng, Ziyun .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2017, 26 (06) :1381-1392
[10]   Banded structure and its distribution in friction stir processing of 316L austenitic stainless steel [J].
Chen, Y. C. ;
Fujii, H. ;
Tsumura, T. ;
Kitagawa, Y. ;
Nakata, K. ;
Ikeuchi, K. ;
Matsubayashi, K. ;
Michishita, Y. ;
Fujiya, Y. ;
Katoh, J. .
JOURNAL OF NUCLEAR MATERIALS, 2012, 420 (1-3) :497-500