Isotropic and anisotropic N-dimensional cosmologies with exponential potentials

被引:23
作者
Chimento, LP [1 ]
Cossarini, AE [1 ]
Zuccala, NA [1 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, DF, Argentina
关键词
D O I
10.1088/0264-9381/15/1/006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate (N + 1)-dimensional anisotropic cosmological models with a massless scalar held, self-interacting through an exponential potential. The problem is reduced to an FRW model with an additional free, massless scalar field. in the N not equal 1 case we find the exact general solution for the Robertson-Walker spacetime and the N > 3 anisotropic Bianchi type 1 model which is a product of a Bat (3 + 1)-dimensional manifold and an (N - 3)-dimensional torus. In both cases the solutions present singularities and power-law inflation. In the multidimensional anisotropic case we also analyse the conditions under which dimensional reduction can proceed. When N = 1 we consider the gravitational theory formed by setting the Ricci scalar equal to the trace of the energy-momentum tensor of the matter fields. In this case the exact general solution of the second-order system of gravitational and self-interacting scalar field equations exhibit singularities, their most notable departure from the N not equal 1 case being the absence of both particle horizons and power-law inflationary solutions.
引用
收藏
页码:57 / 74
页数:18
相关论文
共 50 条
  • [1] Isotropic and anisotropic N-dimensional cosmologies with exponential potentials
    Chimento, L. P.
    Cossarini, A. E.
    Zuccala, N. A.
    Classical and Quantum Gravity, 15 (01):
  • [2] Anisotropic brane cosmologies with exponential potentials
    Aguirregabiria, JM
    Lazkoz, R
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2004, 13 (03): : 539 - 554
  • [3] n-dimensional Friedmann-Robertson-Walker cosmologies
    García, AA
    García-Quiroz, A
    Cataldo, M
    del Campo, S
    Gravitation and Cosmology, 2005, 758 : 240 - 251
  • [4] On anisotropic Gauss-Bonnet cosmologies in (n + 1) dimensions, governed by an n-dimensional Finslerian 4-metric
    V. D. Ivashchuk
    Gravitation and Cosmology, 2010, 16 : 118 - 125
  • [5] Isotropic n-dimensional fringe pattern normalization
    Quiroga, JA
    Servin, M
    OPTICS COMMUNICATIONS, 2003, 224 (4-6) : 221 - 227
  • [6] DEGENERACY OF THE N-DIMENSIONAL, ISOTROPIC, HARMONIC OSCILLATOR
    BAKER, GA
    PHYSICAL REVIEW, 1956, 103 (04): : 1119 - 1120
  • [7] Integrable perturbations of the N-dimensional isotropic oscillator
    Ballesteros, Angel
    Blasco, Alfonso
    PHYSICS LETTERS A, 2010, 374 (22) : 2218 - 2224
  • [8] Global Exponential Stabilization on the n-Dimensional Sphere
    Casau, Pedro
    Mayhew, Christopher G.
    Sanfelice, Ricardo G.
    Silvestre, Carlos
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 3218 - 3223
  • [9] On Anisotropic Gauss-Bonnet Cosmologies in (n+1) Dimensions, Governed by an n-Dimensional Finslerian 4-Metric
    Ivashchuk, V. D.
    GRAVITATION & COSMOLOGY, 2010, 16 (02) : 118 - 125
  • [10] Accelerating cosmologies from exponential potentials
    Neupane, IP
    CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (18) : 4383 - 4397