Existence theorem for periodic solutions of higher order nonlinear differential equations

被引:31
作者
Liu, ZD [1 ]
Mao, YP [1 ]
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
关键词
D O I
10.1006/jmaa.1997.5669
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of periodic solutions to differential equations of the form L(x) + g(t, x, x',..., x((m))) = f(t) with L(x) = x((m)) + a(m-1)x((m-1)) + ... + a(1)x'. (C) 1997 Academic Press.
引用
收藏
页码:481 / 490
页数:10
相关论文
共 18 条
[1]  
[Anonymous], 1985, DISS MATH
[2]  
Bailey P.B., 1968, NONLINEAR 2 POINT BO
[3]  
Bernfeld S., 1974, INTRO NONLINEAR BOUN
[4]  
BROWDER FE, 1969, J FUNCT ANAL, V3
[5]  
Dancer E. N., 1976, Bulletin of the Australian Mathematical Society, V15, P321, DOI 10.1017/S0004972700022747
[6]   PERIODIC SAMPLE SOLUTIONS OF 2ND-ORDER ODES [J].
DEIMLING, K ;
LAKSHMIKANTHAM, V .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (04) :403-409
[7]   EXISTENCE OF SOLUTIONS TO BOUNDARY-VALUE-PROBLEMS FOR 2ND ORDER DIFFERENTIAL-EQUATIONS [J].
ERBE, LH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982, 6 (11) :1155-1162
[8]  
Gaines R. E., 1977, Coincidence degree, and nonlinear differential equations
[9]  
Granas A., 1980, ROCKY MT J MATH, V10, P35, DOI [10.1216/RMJ-1980-10-1-35, DOI 10.1216/RMJ-1980-10-1-35]
[10]  
Hetzer G., 1975, ANN SOC SCI BRUXELLE, V89