Automatic fingerprint verification using neural networks

被引:0
|
作者
Ceguerra, A [1 ]
Koprinska, I [1 ]
机构
[1] Univ Sydney, Sch Informat Technol, Sydney, NSW 2006, Australia
来源
ARTIFICIAL NEURAL NETWORKS - ICANN 2002 | 2002年 / 2415卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an application of Learning Vector Quantization (LVQ) neural network (NN) to Automatic Fingerprint Verification (AFV). The new approach is based on both local (minutiae) and global image features (shape signatures). The matched minutiae are used as reference axis for generating shape signatures which are then digitized to form a feature vector describing the fingerprint. A LVQ NN is trained to match the fingerprints using the difference of a pair of feature vectors. The results show that the integrated system significantly outperforms the minutiae-based system alone in terms of classification accuracy. It also confirms the ability of the trained NN to have consistent performance on unseen databases.
引用
收藏
页码:1281 / 1286
页数:6
相关论文
共 50 条
  • [21] Integrating local and global features in automatic fingerprint verification
    Ceguerra, AV
    Koprinska, F
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL III, PROCEEDINGS, 2002, : 347 - 350
  • [22] Fast fingerprint verification using subregions of fingerprint images
    Chan, KC
    Moon, YS
    Cheng, PS
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2004, 14 (01) : 95 - 101
  • [23] Fingerprint Distortion Rectification using Deep Convolutional Neural Networks
    Dabouei, Ali
    Kazemi, Hadi
    Iranmanesh, Seyed Mehdi
    Dawson, Jeremy
    Nasrabadi, Nasser M.
    2018 INTERNATIONAL CONFERENCE ON BIOMETRICS (ICB), 2018, : 1 - 8
  • [24] Classification of Fingerprint Images into Individual Classes Using Neural Networks
    Karungaru, Stephen
    Fukuda, Keiji
    Fukumi, Minoru
    Akamatsu, Norio
    IECON 2008: 34TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-5, PROCEEDINGS, 2008, : 1793 - 1798
  • [25] Improving Fingerprint Indoor Localization Using Convolutional Neural Networks
    Sun, Danshi
    Wei, Erhu
    Yang, Li
    Xu, Shiyi
    IEEE ACCESS, 2020, 8 : 193396 - 193411
  • [26] Fingerprint ROI Segmentation Using Fourier Coefficients and Neural Networks
    Stojanovic, Branka
    Neskovic, Aleksandar
    Marques, Oge
    2015 23RD TELECOMMUNICATIONS FORUM TELFOR (TELFOR), 2015, : 484 - 487
  • [27] Detection of Fingerprint Alterations Using Deep Convolutional Neural Networks
    Shehu, Yahaya Isah
    Ruiz-Garcia, Ariel
    Palade, Vasile
    James, Anne
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT I, 2018, 11139 : 51 - 60
  • [28] Universal fingerprint minutiae extractor using convolutional neural networks
    Van Huan Nguyen
    Liu, Jinsong
    Thi Hai Binh Nguyen
    Kim, Hakil
    IET BIOMETRICS, 2020, 9 (02) : 47 - 57
  • [29] Fingerprint Classification in DCT Domain using RBF Neural Networks
    Jin, Cong
    Jin, Ping
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2009, 25 (06) : 1955 - 1962
  • [30] Study on fingerprint authentication systems using convolutional neural networks
    Moga, Delia
    Filip, Ioan
    IEEE 15TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI 2021), 2021, : 15 - 20