The Ramsey numbers of stars versus wheels

被引:27
作者
Chen, YJ [1 ]
Zhang, YQ [1 ]
Zhang, KM [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Ramsey number; star; wheel;
D O I
10.1016/j.ejc.2003.12.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For two given graphs G(1) and G(2), the Ramsey number R(G(1), G(2)) is the smallest positive integer n such that for any graph G of order it, either G contains G(1) or the complement of G contains G(2). Let S-n denote a star of order it and W-m a wheel of order m + 1. This paper shows that R (S-n, W-6) = 2n + 1 for n > 3 and R(S-n, W-m) = 3n - 2 for in odd and n greater than or equal to m - 1 greater than or equal to 2. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1067 / 1075
页数:9
相关论文
共 9 条
[1]   On Ramsey numbers for trees versus wheels of five or six vertices [J].
Baskoro, ET ;
Surahmat ;
Nababan, SM ;
Miller, M .
GRAPHS AND COMBINATORICS, 2002, 18 (04) :717-721
[2]  
Bondy J.A., 1971, J COMBINATORIAL THEO, V11, P80
[3]  
BRANDT S, 1994, THESIS FREIE U BERLI
[4]   GENERALIZATIONS OF A RAMSEY-THEORETIC RESULT OF CHVATAL [J].
BURR, SA ;
ERDOS, P .
JOURNAL OF GRAPH THEORY, 1983, 7 (01) :39-51
[5]   A result on C-4-star Ramsey numbers [J].
Chen, GT .
DISCRETE MATHEMATICS, 1997, 163 (1-3) :243-246
[6]   GENERALIZED RAMSEY THEORY FOR GRAPHS .3. SMALL OFF-DIAGONAL NUMBERS [J].
CHVATAL, V ;
HARARY, F .
PACIFIC JOURNAL OF MATHEMATICS, 1972, 41 (02) :335-&
[7]  
Dirac G. A., 1952, Proc. Lond. Math. Soc, V2, P69, DOI [10.1112/plms/s3-2.1.69, DOI 10.1112/PLMS/S3-2.1.69]
[8]  
Radziszowski S., 1994, AUSTRALAS J COMB, V9, P221
[9]  
Surahmat E.T, 2001, P 12 AUSTR WORKSH CO, P174