Semi-Empirical Soil Organic Matter Retrieval Model With Spectral Reflectance

被引:9
作者
Yuan, Jing [1 ,2 ]
Hu, Chunhui [1 ]
Yan, Changxiang [1 ,3 ]
Li, Zhizhong [4 ]
Chen, Shengbo [5 ]
Wang, Shurong [1 ]
Wang, Xin [1 ,2 ]
Xu, Zhengyuan [5 ]
Ju, Xueping [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Jilin, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[4] CGS, Shenyang Inst Geol & Mineral Resources, Shenyang 110034, Liaoning, Peoples R China
[5] Jilin Univ, Coll Geoexplorat Sci & Technol, Changchun 130026, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Soil organic matter retrieval; reflectance; semi-empirical model; KM; MACHINE LEARNING-METHODS; MOISTURE RETRIEVAL; CALIBRATION; PREDICTION; CARBON; INTERPOLATION; SPECTROSCOPY; TEXTURE;
D O I
10.1109/ACCESS.2019.2941258
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Rapid and accurate monitoring of soil organic matter (SOM) content is of great significance for precision fertilization of farmland. However, the SOM retrieval models are mainly established by statistical methods, which have limited application scope and incomplete theoretical foundation. Moreover, the accuracy of the SOM retrieval models remains raised. In this paper, for the first time, a semi-empirical SOM content retrieval model is constructed, which has certain theoretical basis, strong applicability and higher accuracy than before. Based on the Kubelka-Munk (KM) theory, the SOM retrieval model with the absorption coefficient k and scattering coefficient s related to SOM (r = k/s) is derived. The validity and reliability of the model are confirmed with validation set (n = 26) including three sorts of soils. Results show that the model can estimate SOM content in different sorts of soils with high prediction accuracy and good prediction ability (root mean square errors of prediction (RMSEP), coefficients of determination (R-2) and relative percentage deviation (RPD) values of 0.18%, 89.9% and 3.2, respectively) in the range of 552-950nm. The model provides an innovative method for predicting SOM content.
引用
收藏
页码:134164 / 134172
页数:9
相关论文
共 50 条
[41]   A semi-empirical inversion model for assessing surface soil moisture using AMSR-E brightness temperatures [J].
Chen, Xiu-zhi ;
Chen, Shui-sen ;
Zhong, Ruo-fei ;
Su, Yong-xian ;
Liao, Ji-shan ;
Li, Dan ;
Han, Liu-sheng ;
Li, Yong ;
Li, Xia .
JOURNAL OF HYDROLOGY, 2012, 456 :1-11
[42]   A Soil Semi-Empirical Dielectric Model Based on the Dielectric Variation Characteristics of an Electrical Double-Layer Solution [J].
Jin, Xiao ;
Bai, Ruiqiang ;
Gao, Xiaoqing ;
Yang, Wen ;
Yu, Ye ;
Li, Zhenchao .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[43]   Structural optimization of acceptor molecules guided by a semi-empirical model for organic solar cells with efficiency over 15% [J].
Meng, Lingxian ;
Gao, Huan-Huan ;
Wu, Simin ;
Sun, Yanna ;
Wan, Xiangjian ;
Yang, Yang ;
Wang, Jian ;
Guo, Ziqi ;
Chen, Hongbin ;
Li, Chenxi ;
Chen, Yongsheng .
SCIENCE CHINA-MATERIALS, 2021, 64 (10) :2388-2396
[44]   Semi-empirical Model of the White Light Flare on September 19, 1979 [J].
方成 ;
丁明德 ;
罔本富三 ;
甘为群 .
Science China Mathematics, 1993, (02) :217-226
[45]   A semi-empirical model for the charging and discharging of electric-paint displays [J].
Edwards, MOM ;
Gruszecki, T ;
Pettersson, H ;
Thuraisingham, G ;
Hagfeldt, A .
ELECTROCHEMISTRY COMMUNICATIONS, 2002, 4 (12) :963-967
[46]   On the interest of a semi-empirical model for the tooth friction coefficient in gear transmissions [J].
Quiban, Romain ;
De Bechillon, Nicolas Grenet ;
Touret, Thomas ;
Navet, Pierre ;
Diab, Yasser ;
Cavoret, Jerome ;
Ville, Fabrice ;
Changenet, Christophe .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY, 2021, 235 (12) :2654-2663
[47]   Calculation and Analysis of Arcing Process of Fuses Based on Semi-empirical Model [J].
Wang S. ;
Zhuang J. ;
Dong R. ;
Lei R. ;
Liu S. .
Gaodianya Jishu/High Voltage Engineering, 2020, 46 (01) :319-326
[48]   Spectral Assessment of Organic Matter with Different Composition Using Reflectance Spectroscopy [J].
Francos, Nicolas ;
Ogen, Yaron ;
Ben-Dor, Eyal .
REMOTE SENSING, 2021, 13 (08)
[49]   SOIL SPECTRAL REFLECTANCE BEHAVIOR RELATED TO CHEMICAL SOIL PROPERTIES AND MACRONUTRIENTS USING THE PLSR MODEL [J].
Abdellatif, Abdellatif Deyab ;
Abou-Kota, Mohamed El Sayed ;
Ganzour, Shimaa Kamal ;
Allam, Ahlam Sayed .
INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 (01) :309-316
[50]   An analytical and semi-empirical model for the viscous flow around a vortex cavity [J].
Bosschers, Johan .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2018, 105 :122-133