Semi-Empirical Soil Organic Matter Retrieval Model With Spectral Reflectance

被引:9
作者
Yuan, Jing [1 ,2 ]
Hu, Chunhui [1 ]
Yan, Changxiang [1 ,3 ]
Li, Zhizhong [4 ]
Chen, Shengbo [5 ]
Wang, Shurong [1 ]
Wang, Xin [1 ,2 ]
Xu, Zhengyuan [5 ]
Ju, Xueping [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Jilin, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[4] CGS, Shenyang Inst Geol & Mineral Resources, Shenyang 110034, Liaoning, Peoples R China
[5] Jilin Univ, Coll Geoexplorat Sci & Technol, Changchun 130026, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Soil organic matter retrieval; reflectance; semi-empirical model; KM; MACHINE LEARNING-METHODS; MOISTURE RETRIEVAL; CALIBRATION; PREDICTION; CARBON; INTERPOLATION; SPECTROSCOPY; TEXTURE;
D O I
10.1109/ACCESS.2019.2941258
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Rapid and accurate monitoring of soil organic matter (SOM) content is of great significance for precision fertilization of farmland. However, the SOM retrieval models are mainly established by statistical methods, which have limited application scope and incomplete theoretical foundation. Moreover, the accuracy of the SOM retrieval models remains raised. In this paper, for the first time, a semi-empirical SOM content retrieval model is constructed, which has certain theoretical basis, strong applicability and higher accuracy than before. Based on the Kubelka-Munk (KM) theory, the SOM retrieval model with the absorption coefficient k and scattering coefficient s related to SOM (r = k/s) is derived. The validity and reliability of the model are confirmed with validation set (n = 26) including three sorts of soils. Results show that the model can estimate SOM content in different sorts of soils with high prediction accuracy and good prediction ability (root mean square errors of prediction (RMSEP), coefficients of determination (R-2) and relative percentage deviation (RPD) values of 0.18%, 89.9% and 3.2, respectively) in the range of 552-950nm. The model provides an innovative method for predicting SOM content.
引用
收藏
页码:134164 / 134172
页数:9
相关论文
共 50 条
[31]   Semi-empirical model of surface finish on electrical discharge machining [J].
Tsai, KM ;
Wang, PJ .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2001, 41 (10) :1455-1477
[32]   Semi-empirical model for resuspension of multilayer sedimentary aerosols in pipes [J].
Hu, Peizheng ;
Gao, Zhichao ;
Huang, Yixin ;
Tong, Lili ;
Cao, Xuewu .
ANNALS OF NUCLEAR ENERGY, 2025, 223
[33]   Extrapolability and limitations of a semi-empirical model for the simulation of volumetric expanders [J].
Dumont, Olivier ;
Dickes, Remi ;
Lemort, Vincent .
4TH INTERNATIONAL SEMINAR ON ORC POWER SYSTEMS, 2017, 129 :315-322
[34]   Development of a semi-empirical equilibrium model for downdraft gasification systems [J].
Aydin, Ebubekir Siddik ;
Yucel, Ozgun ;
Sadikoglu, Hasan .
ENERGY, 2017, 130 :86-98
[35]   A transient semi-empirical voltage model of a fuel cell stack [J].
Hou, Yongping ;
Zhuang, Mingxi ;
Wan, Gang .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (07) :857-862
[36]   Semi-empirical model of a multi-diaphragm pump in an Organic Rankine Cycle (ORC) experimental unit [J].
D'Amico, F. ;
Pallis, P. ;
Leontaritis, A. D. ;
Karellas, S. ;
Kakalis, N. M. ;
Rech, S. ;
Lazzaretto, A. .
ENERGY, 2018, 143 :1056-1071
[37]   Rapid determination of soil organic matter quality indicators using visible near infrared reflectance spectroscopy [J].
St Luce, Mervin ;
Ziadi, Noura ;
Zebarth, Bernie J. ;
Grant, Cynthia A. ;
Tremblay, Gaetan F. ;
Gregorich, Edward G. .
GEODERMA, 2014, 232 :449-458
[38]   Design and calibration of a semi-empirical model for capturing dominant aging mechanisms of a PbA battery [J].
Sadabadi, Kaveh Khodadadi ;
Ramesh, Prashanth ;
Tulpule, Punit ;
Rizzoni, Giorgio .
JOURNAL OF ENERGY STORAGE, 2019, 24
[39]   Impact of Spectral Resolution and Signal-to-Noise Ratio in Vis-NIR Spectrometry on Soil Organic Matter Estimation [J].
Yu, Bo ;
Yuan, Jing ;
Yan, Changxiang ;
Xu, Jiawei ;
Ma, Chaoran ;
Dai, Hu .
REMOTE SENSING, 2023, 15 (18)
[40]   The Influence of Spectral Pretreatment on the Selection of Representative Calibration Samples for Soil Organic Matter Estimation Using Vis-NIR Reflectance Spectroscopy [J].
Liu, Yi ;
Liu, Yaolin ;
Chen, Yiyun ;
Zhang, Yang ;
Shi, Tiezhu ;
Wang, Junjie ;
Hong, Yongsheng ;
Fei, Teng ;
Zhang, Yang .
REMOTE SENSING, 2019, 11 (04)