One-time nitrogen fertilization shifts switchgrass soil microbiomes within a context of larger spatial and temporal variation

被引:13
作者
Chen, Huaihai [1 ]
Yang, Zamin K. [1 ]
Yip, Dan [1 ]
Morris, Reese H. [1 ]
Lebreux, Steven J. [1 ]
Cregger, Melissa A. [1 ]
Klingeman, Dawn M. [1 ]
Hui, Dafeng [2 ]
Hettich, Robert L. [3 ,4 ]
Wilhelm, Steven W. [4 ]
Wang, Gangsheng [5 ,6 ,7 ]
Loffler, Frank E. [1 ,4 ]
Schadt, Christopher W. [1 ,4 ]
机构
[1] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37830 USA
[2] Tennessee State Univ, Dept Biol Sci, Nashville, TN 37203 USA
[3] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA
[4] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA
[5] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN USA
[6] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA
[7] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA
来源
PLOS ONE | 2019年 / 14卷 / 06期
关键词
BACTERIAL COMMUNITY STRUCTURE; LONG-TERM N; FUNGAL COMMUNITIES; SEASONAL DYNAMICS; FERTILITY GRADIENT; PANICUM-VIRGATUM; CARBON; FOREST; MANAGEMENT; DIVERSITY;
D O I
10.1371/journal.pone.0211310
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Soil microbiome responses to short-term nitrogen (N) inputs remain uncertain when compared with previous research that has focused on long-term fertilization responses. Here, we examined soil bacterial/archaeal and fungal communities pre- and post-N fertilization in an 8 year-old switchgrass field, in which twenty-four plots received N fertilization at three levels (0, 100, and 200 kg N ha(-1) as NH4NO3) for the first time since planting. Soils were collected at two depths, 0-5 and 5-15 cm, for DNA extraction and amplicon sequencing of 16S rRNA genes and ITS regions for assessment of microbial community composition. Baseline assessments prior to fertilization revealed no significant pre-existing divergence in either bacterial/archaeal or fungal communities across plots. The one-time N fertilizations increased switchgrass yields and tissue N content, and the added N was nearly completely removed from the soil of fertilized plots by the end of the growing season. Both bacterial/archaeal and fungal communities showed large spatial (by depth) and temporal variation (by season) within each plot, accounting for 17 and 12-22% of the variation as calculated from the Sq. root of PERMANOVA tests for bacterial/archaeal and fungal community composition, respectively. While N fertilization effects accounted for only similar to 4% of overall variation, some specific microbial groups, including the bacterial genus Pseudonocardia and the fungal genus Archaeorhizomyces, were notably repressed by fertilization at 200 kg N ha(-1). Bacterial groups varied with both depth in the soil profile and time of sampling, while temporal variability shaped the fungal community more significantly than vertical heterogeneity in the soil. These results suggest that short-term effects of N fertilization are significant but subtle, and other sources of variation will need to be carefully accounted for study designs including multiple intra-annual sampling dates, rather than one-time "snapshot" analyses that are common in the literature. Continued analyses of these trends over time with fertilization and management are needed to understand how these effects may persist or change over time.
引用
收藏
页数:23
相关论文
共 76 条
[1]  
Anderson M.J., 2004, DISTLM V 5 FORTRAN C, V10, P2016
[2]  
[Anonymous], GLOBAL CHANGE BIOL
[3]  
[Anonymous], 2013, Genomics of Soiland Plant-Associated Fungi. Soil Biology, DOI [10.1007/978-3-642-39339-6_14, DOI 10.1007/978-3-642-39339-6_14, DOI 10.1007/978-3-642-39339-6]
[4]  
[Anonymous], 2015, FRONT MICROBIOL, DOI DOI 10.3389/fmicb.2015.00891
[5]  
[Anonymous], FRONTIERS MICROBIOLO
[6]  
Aoki Y., 2015, ADV MICROBIOL-NY, V5, P817, DOI DOI 10.4236/AIM.2015.513086
[7]   Heatmapper: web-enabled heat mapping for all [J].
Babicki, Sasha ;
Arndt, David ;
Marcu, Ana ;
Liang, Yongjie ;
Grant, Jason R. ;
Maciejewski, Adam ;
Wishart, David S. .
NUCLEIC ACIDS RESEARCH, 2016, 44 (W1) :W147-W153
[8]   Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers [J].
Bai, Ren ;
Wang, Jun-Tao ;
Deng, Ye ;
He, Ji-Zheng ;
Feng, Kai ;
Zhang, Li-Mei .
FRONTIERS IN MICROBIOLOGY, 2017, 8
[9]   Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands [J].
Bardgett, RD ;
Lovell, RD ;
Hobbs, PJ ;
Jarvis, SC .
SOIL BIOLOGY & BIOCHEMISTRY, 1999, 31 (07) :1021-1030
[10]   Soil Bacterial Community Response to Differences in Agricultural Management along with Seasonal Changes in a Mediterranean Region [J].
Bevivino, Annamaria ;
Paganin, Patrizia ;
Bacci, Giovanni ;
Florio, Alessandro ;
Pellicer, Maite Sampedro ;
Papaleo, Maria Cristiana ;
Mengoni, Alessio ;
Ledda, Luigi ;
Fani, Renato ;
Benedetti, Anna ;
Dalmastri, Claudia .
PLOS ONE, 2014, 9 (08)