SCMA Decoding via Deep Learning

被引:22
作者
Wei, Chia-Po [1 ]
Yang, Han [2 ]
Li, Chih-Peng [2 ]
Chen, Yen-Ming [2 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Elect Engn, Kaohsiung 804, Taiwan
[2] Natl Sun Yat Sen Univ, Inst Commun Engn, Kaohsiung 80424, Taiwan
关键词
Neural networks; Bit error rate; Training data; Receivers; Fading channels; Downlink; NOMA; Sparse code multiple access (SCMA); deep neural network (DNN); bit error rate (BER); deep learning;
D O I
10.1109/LWC.2020.3048068
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sparse code multiple access (SCMA) has become a highly competitive technology for future cellular systems. For the receiver of the SCMA system, besides the traditional maximum likelihood and message passing algorithm solutions, a deep neural network (DNN) method that causes whirlwinds in image recognition can reduce the computational complexity of the decoder. We expect low complexity while maintaining a satisfactory bit error rate (BER) performance. As shown in our simulations, our proposed solution has better BER performance and lower computational complexity than other previously studied DNN solutions.
引用
收藏
页码:878 / 881
页数:4
相关论文
共 19 条
  • [11] Power-Domain Non-Orthogonal Multiple Access (NOMA) in 5G Systems: Potentials and Challenges
    Islam, S. M. Riazul
    Avazov, Nurilla
    Dobre, Octavia A.
    Kwak, Kyung-Sup
    [J]. IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2017, 19 (02): : 721 - 742
  • [12] Kang G.-M., 2017, P 2017 23 ASIA PACIF, P1
  • [13] Deep Learning-Aided SCMA
    Kim, Minhoe
    Kim, Nam-I
    Lee, Woongsup
    Cho, Dong-Ho
    [J]. IEEE COMMUNICATIONS LETTERS, 2018, 22 (04) : 720 - 723
  • [14] A novel deep neural network based approach for sparse code multiple access
    Lin, Jinzhi
    Feng, Shengzhong
    Yang, Zhile
    Zhang, Yun
    Zhang, Yong
    [J]. NEUROCOMPUTING, 2020, 382 : 52 - 63
  • [15] Generalized Frequency Division Multiplexing for 5th Generation Cellular Networks
    Michailow, Nicola
    Matthe, Maximilian
    Gaspar, Ivan Simoes
    Caldevilla, Ainoa Navarro
    Mendes, Luciano Leonel
    Festag, Andreas
    Fettweis, Gerhard
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2014, 62 (09) : 3045 - 3061
  • [16] Nilopour H, 2013, 2013 IEEE 24TH INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), P332, DOI 10.1109/PIMRC.2013.6666156
  • [17] Design and Analysis of SCMA Codebook Based on Star-QAM Signaling Constellations
    Yu, Lisu
    Fan, Pingzhi
    Cai, Donghong
    Ma, Zheng
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (11) : 10543 - 10553
  • [18] Deep Learning in Mobile and Wireless Networking: A Survey
    Zhang, Chaoyun
    Patras, Paul
    Haddadi, Hamed
    [J]. IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2019, 21 (03): : 2224 - 2287
  • [19] Fast Automatic Vehicle Annotation for Urban Traffic Surveillance
    Zhou, Yi
    Liu, Li
    Shao, Ling
    Mellor, Matt
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2018, 19 (06) : 1973 - 1984