Schatten class Bergman-type and Szego-type operators on bounded symmetric domains

被引:1
作者
Ding, Lijia [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
基金
中国博士后科学基金;
关键词
Bergman kernel; Integral operator; Schatten class; Symmetric domain; HOLOMORPHIC BESOV-SPACES; TOEPLITZ-OPERATORS; PROJECTIONS;
D O I
10.1016/j.aim.2022.108314
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate singular integral operators induced by the Bergman kernel and Szego kernel on the irreducible bounded symmetric domain in its standard HarishChandra realization. We completely characterize when Bergman-type operators and Szego-type operators belong to Schatten class operator ideals by several analytic numerical invariants of the bounded symmetric domain. These results not only generalize a recent result on the Hilbert unit ball due to the author and his coauthor but also cover all irreducible bounded symmetric domains. Moreover, we obtain two trace formulae and a new integral estimate related to the Forelli-Rudin estimate. The key ingredient of the proofs involves the function theory on the bounded symmetric domain and the spectrum estimate of Bergman-type and Szego-type operators.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:27
相关论文
共 29 条
[1]  
Adama A., 2003, SOBOLEV SPACES PURE
[2]  
[Anonymous], 2007, MATH SURVEYS MONOGRA, V138
[3]  
Bkoll D., 1995, COLLOQ MATH-WARSAW, V68, P81
[4]   Lp-Lq Estimates for Bergman Projections in Bounded Symmetric Domains of Tube Type [J].
Bonami, Aline ;
Garrigos, Gustavo ;
Nana, Cyrille .
JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (04) :1737-1769
[5]  
CARTAN E., 1935, ABHANDL MATH SEM U H, V11, P116
[6]   The Singular Integral Operator Induced by Drury-Arveson Kernel [J].
Cheng, Guozheng ;
Hou, Xiaoyang ;
Liu, Chao .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (04) :917-929
[7]   THE HYPER-SINGULAR COUSIN OF THE BERGMAN PROJECTION [J].
Cheng, Guozheng ;
Fang, Xiang ;
Wang, Zipeng ;
Yu, Jiayang .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (12) :8643-8662
[8]  
Ding L., 2020, ARXIV200413635
[9]  
Ding L., 2022, TAIWAN J MATH, P1, DOI [10.11650/tjm/2201012022, DOI 10.11650/TJM/2201012022]
[10]   On the Faraut-Koranyi hypergeometric functions in rank two [J].
Englis, M ;
Zhang, GK .
ANNALES DE L INSTITUT FOURIER, 2004, 54 (06) :1855-+