Lignin Epoxy Composites: Preparation, Morphology, and Mechanical Properties

被引:50
作者
Sun, Jiaotong [1 ]
Wang, Cun [2 ]
Yeo, Jayven Chee Chuan [3 ]
Yuan, Du [1 ]
Li, Hui [1 ]
Stubbs, Ludger P. [2 ]
He, Chaobin [1 ,3 ]
机构
[1] Natl Univ Singapore, Dept Mat Sci & Engn, 9 Engn Dr 1, Singapore 117575, Singapore
[2] ASTAR, Inst Chem & Engn Sci, 1 Pesek Rd, Singapore 627833, Singapore
[3] ASTAR, Inst Mat Res & Engn, 3 Res Link, Singapore 117602, Singapore
关键词
ENGINEERING PLASTICS; FRACTURE-TOUGHNESS; CURING KINETICS; RESIN; ACID;
D O I
10.1002/mame.201500310
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A novel route to lignin epoxy composites is developed through covalent incorporation of depolymerized lignin epoxide into amine-cured epoxy matrix. The partially depolymerized lignin is first epoxidized with epichlorohydrin and the resultant depolymerized lignin epoxide shows decreased solubility in common organic solvents. When dispersed in epoxy matrix and cured, the depolymerized lignin epoxide is integrated into epoxy networks in the form of sub-micron aggregates. The resulting lignin epoxy composites show improved mechanical properties compared with neat epoxy. At a loading content of 1.0 wt% of degraded lignin epoxide, the Young's modulus and the critical stress intensity factor (K-IC) of the composite increase by 10% and 25%, respectively, in comparison with those of neat epoxy, while the glass transition temperature is little changed. This method presents a promising way to convert wasteful lignin to an alternative epoxy monomer and effective additive in epoxy composites.
引用
收藏
页码:328 / 336
页数:9
相关论文
共 36 条
[1]   Thermo-mechanical characterization of bioblends from polylactide and poly(butylene adipate-co-terephthalate) and lignin [J].
Abdelwahab, Mohamed A. ;
Taylor, Sarah ;
Misra, Manjusri ;
Mohanty, Amar K. .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2015, 300 (03) :299-311
[2]   Influence of the reaction stoichiometry on the mechanical and thermal properties of SWCNT-modified epoxy composites [J].
Ashrafi, Behnam ;
Martinez-Rubi, Yadienka ;
Khoun, Lolei ;
Yourdkhani, Mostafa ;
Kingston, Christopher T. ;
Hubert, Pascal ;
Simard, Benoit ;
Johnston, Andrew .
NANOTECHNOLOGY, 2013, 24 (26)
[3]   Biobased Thermosetting Epoxy: Present and Future [J].
Auvergne, Remi ;
Caillol, Sylvain ;
David, Ghislain ;
Boutevin, Bernard ;
Pascault, Jean-Pierre .
CHEMICAL REVIEWS, 2014, 114 (02) :1082-1115
[4]   In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels [J].
Chabannes, M ;
Ruel, K ;
Yoshinaga, A ;
Chabbert, B ;
Jauneau, A ;
Joseleau, JP ;
Boudet, AM .
PLANT JOURNAL, 2001, 28 (03) :271-282
[5]   Improved Lignin Polyurethane Properties with Lewis Acid Treatment [J].
Chung, Hoyong ;
Washburn, Newell R. .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (06) :2840-2846
[6]   Novel high performance tough hyperbranched epoxy by an A2 + B3 polycondensation reaction [J].
De, Bibekananda ;
Karak, Niranjan .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (02) :348-353
[7]   Biolignin™ based epoxy resins [J].
Delmas, Guo-Hua ;
Benjelloun-Mlayah, Bouchra ;
Le Bigot, Yves ;
Delmas, Michel .
JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 127 (03) :1863-1872
[8]  
El Mansouri NE, 2011, BIORESOURCES, V6, P2492
[9]   Bio-based epoxy resins with low molecular weight kraft lignin and pyrogallol [J].
Engelmann, Gunnar ;
Ganster, Johannes .
HOLZFORSCHUNG, 2014, 68 (04) :435-446
[10]   Synthesis of lignin-based epoxy resins: optimization of reaction parameters using response surface methodology [J].
Ferdosian, Fatemeh ;
Yuan, Zhongshun ;
Anderson, Mark ;
Xu, Chunbao .
RSC ADVANCES, 2014, 4 (60) :31745-31753