Combining multiple deep learning algorithms for prognostic and health management of aircraft

被引:99
作者
Che, Changchang [1 ]
Wang, Huawei [1 ]
Fu, Qiang [1 ]
Ni, Xiaomei [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Civil Aviat, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Prognostic and health management (PHM); Long short-term memory (LSTM); Deep belief network (DBN); Condition assessment; Fault classification; Remaining useful life (RUL); SHORT-TERM-MEMORY; REMAINING USEFUL LIFE; FAULT-DIAGNOSIS; BELIEF NETWORK;
D O I
10.1016/j.ast.2019.105423
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The development of airborne sensor monitoring and artificial intelligence technologies provides effective tools for precise prognostic and health management (PHM) of aircraft. This paper presents a PHM model which combines multiple deep learning algorithms for condition assessment, fault classification, sensor prediction, and remaining useful life (RUL) estimation of aircraft systems. A long short-term memory (LSTM) based recurrent network is used to predict multiple multivariate time series of sensors, and deep belief network (DBN) is applied to assess system condition and classify faults of aircraft systems. Then, the RUL can be estimated through the integration of condition assessment and sensor prediction. Finally, the proposed algorithm is validated experimentally using NASA's C-MAPSS dataset, and the results showed a lower error rate and deviation than traditional models. (C) 2019 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:9
相关论文
共 35 条
[1]   The WEAR methodology for prognostics and health management implementation in manufacturing [J].
Adams, Stephen ;
Malinowski, Michael ;
Heddy, Gerald ;
Choo, Benjamin ;
Beling, Peter A. .
JOURNAL OF MANUFACTURING SYSTEMS, 2017, 45 :82-96
[2]   Estimating the remaining useful life of bearings using a neuro-local linear estimator-based method [J].
Ahmad, Wasim ;
Khan, Sheraz Ali ;
Kim, Jong-Myon .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2017, 141 (05) :EL452-EL457
[3]   Practical options for selecting data-driven or physics-based prognostics algorithms with reviews [J].
An, Dawn ;
Kim, Nam H. ;
Choi, Joo-Ho .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2015, 133 :223-236
[4]   Deep neural networks-based rolling bearing fault diagnosis [J].
Chen, Zhiqiang ;
Deng, Shengcai ;
Chen, Xudong ;
Li, Chuan ;
Sanchez, Rene-Vinicio ;
Qin, Huafeng .
MICROELECTRONICS RELIABILITY, 2017, 75 :327-333
[5]   Dissolved Gas Analysis of Insulating Oil for Power Transformer Fault Diagnosis with Deep Belief Network [J].
Dai, Jiejie ;
Song, Hui ;
Sheng, Gehao ;
Jiang, Xiuchen .
IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2017, 24 (05) :2828-2835
[6]   A summary of fault modelling and predictive health monitoring of rolling element bearings [J].
El-Thalji, Idriss ;
Jantunen, Erkki .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2015, 60-61 :252-272
[7]   Learning combination weights in data fusion using Genetic Algorithms [J].
Ghosh, Kripabandhu ;
Parui, Swapan Kumar ;
Majumder, Prasenjit .
INFORMATION PROCESSING & MANAGEMENT, 2015, 51 (03) :306-328
[8]  
Goulianas K., 2017, EUR J APPL MATH, V29, P1
[9]   A recurrent neural network based health indicator for remaining useful life prediction of bearings [J].
Guo, Liang ;
Li, Naipeng ;
Jia, Feng ;
Lei, Yaguo ;
Lin, Jing .
NEUROCOMPUTING, 2017, 240 :98-109
[10]   Unsupervised Fault Diagnosis of a Gear Transmission Chain Using a Deep Belief Network [J].
He, Jun ;
Yang, Shixi ;
Gan, Chunbiao .
SENSORS, 2017, 17 (07)