On a connection between symmetric polynomials, generalized Stirling numbers and the Newton general divided difference interpolation polynomial

被引:9
作者
El-Mikkawy, M [1 ]
El-Desouky, B
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[2] Suez Canal Univ, Fac Educ, Dept Math, Port Said, Egypt
关键词
Stirling numbers; interpolation; symmetric polynomials; matrices; MAPLE programming;
D O I
10.1016/S0096-3003(02)00142-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper gives a connection between symmetric polynomials, generalized Stirling numbers and the Newton general divided difference interpolation polynomial. The generalized Stirling numbers of the first and second kind denoted s(n,k)([a]) and S-n,k([a]) respectively are given symbolically for the case n = 5, as an illustrative example, by using MAPLE programming [MAPLE V R3 Programming Reference Manual]. These numbers depend on n, k and n distinct values a(1), a(2).... a(n). The ordinary Stirling numbers s(n,k) and S-n,S-k may be obtained as special cases by taking a(i) = i - 1, i = 1 (1) n. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:375 / 385
页数:11
相关论文
共 9 条
[1]  
Allen M B, 1997, NUMERICAL ANAL APPL
[2]  
[Anonymous], 1984, APPL NUMERICAL ANAL
[3]  
[Anonymous], 1972, ELEMENTARY NUMERICAL
[4]  
BELLAVISTA LV, 1983, RENDICONTI CIRCOLO M, V32, P9
[5]  
COMTET L, 1972, CR ACAD SCI A MATH, V275, P747
[6]  
El-Mikkawy M. E. A., 1990, J I MATH COMPUTER SC, V3, P293
[7]  
Khidr A.M., 1984, EUR J COMBIN, V5, P51
[8]  
van Lint J., 1992, A Course in Combinatorics
[9]  
MAPLE V R3 PROGRAMMI