Deep learning-based aggressive progression prediction from CT images of hepatocellular carcinoma

被引:1
作者
Pan, Meiqing [1 ]
Tang, Zhenchao [1 ,2 ]
Fu, Sirui [3 ]
Mu, Wei [1 ,2 ]
Zhang, Jie [5 ]
Li, Xiaoqun [6 ]
Zhang, Hui [1 ]
Lu, Ligong [3 ]
Tian, Jie [1 ,2 ,4 ]
机构
[1] Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Sch Med & Engn, Beijing 100191, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Key Lab Mol Imaging, Beijing 100190, Peoples R China
[3] Jinan Univ, Zhuhai Peoples Hosp, Zhuhai Intervent Med Ctr, Zhuhai Hosp, Zhuhai, Peoples R China
[4] Univ Chinese Acad Sci, Beijing, Peoples R China
[5] Jinan Univ, Zhuhai Peoples Hosp, Zhuhai Hosp, Dept Radiol, Zhuhai, Peoples R China
[6] Zhongshan City Peoples Hosp, Dept Intervent Treatment, Zhongshan, Peoples R China
来源
MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS | 2021年 / 11597卷
基金
中国国家自然科学基金;
关键词
deep learning; radiomics; hepatocellular carcinoma;
D O I
10.1117/12.2581057
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Repeat liver resection or transarterial chemoembolization (TACE) can be used for disease progression (PD) of hepatocellular carcinoma (HCC), but when patients developed extrahepatic metastasis or macrovascular invasion which was aggressive disease progression (aggressive-PD), the treatments became a challenge. Therefore, it was meaningful to predict aggressive-PD as early as possible considering the current prediction method in clinical was unreliable. In this study, a deep learning model was conducted to predict aggressive-PD. 333 patients receiving hepatectomy or TACE were enrolled from five hospitals. For each patient, deep learning score was calculated from a convolutional neural network model constructed based on resnet block. The model showed excellent perfounance for individualized, non-invasive prediction of the progression of Hepatocellular carcinoma (training set: ACC=75.61%, AUC=0.81, validation set: ACC=87.36%, AUC=0.82). Pearson correlation analysis showed albumin concentration were significantly correlated with deep learning score.
引用
收藏
页数:6
相关论文
共 15 条
[1]  
Bray F., 2018, CA-CANCER J CLIN, V68, P394, DOI DOI 10.3322/caac.21492
[2]   Comparison of Deep-Learning and Conventional Machine-Learning Methods for the Automatic Recognition of the Hepatocellular Carcinoma Areas from Ultrasound Images [J].
Brehar, Raluca ;
Mitrea, Delia-Alexandrina ;
Vancea, Flaviu ;
Marita, Tiberiu ;
Nedevschi, Sergiu ;
Lupsor-Platon, Monica ;
Rotaru, Magda ;
Badea, Radu Ioan .
SENSORS, 2020, 20 (11)
[3]   Fibroblast Growth Factor 19-Mediated Up-regulation of SYR-Related High-Mobility Group Box 18 Promotes Hepatocellular Carcinoma Metastasis by Transactivating Fibroblast Growth Factor Receptor 4 and Fms-Related Tyrosine Kinase 4 [J].
Chen, Jie ;
Du, Feng ;
Dang, Yunzhi ;
Li, Xiaowei ;
Qian, Meirui ;
Feng, Weibo ;
Qiao, Chenyang ;
Fan, Daiming ;
Nie, Yongzhan ;
Wu, Kaichun ;
Xia, Limin .
HEPATOLOGY, 2020, 71 (05) :1712-1731
[4]   Radiomics for liver tumours [J].
Dreher, Constantin ;
Linde, Philipp ;
Boda-Heggemann, Judit ;
Baessler, Bettina .
STRAHLENTHERAPIE UND ONKOLOGIE, 2020, 196 (10) :888-899
[5]  
European Assoc Study Liver, 2018, J HEPATOL, V69, P182, DOI 10.1016/j.jhep.2018.03.019
[6]   Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma [J].
Finn, Richard S. ;
Qin, Shukui ;
Ikeda, Masafumi ;
Galle, Peter R. ;
Ducreux, Michel ;
Kim, Tae-You ;
Kudo, Masatoshi ;
Breder, Valeriy ;
Merle, Philippe ;
Kaseb, Ahmed O. ;
Li, Daneng ;
Verret, Wendy ;
Xu, Derek-Zhen ;
Hernandez, Sairy ;
Liu, Juan ;
Huang, Chen ;
Mulla, Sohail ;
Wang, Yulei ;
Lim, Ho Yeong ;
Zhu, Andrew X. ;
Cheng, Ann-Lii .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (20) :1894-1905
[7]   Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology [J].
Limkin, E. J. ;
Sun, R. ;
Dercle, L. ;
Zacharaki, E. I. ;
Robert, C. ;
Reuze, S. ;
Schernberg, A. ;
Paragios, N. ;
Deutsch, E. ;
Ferte, C. .
ANNALS OF ONCOLOGY, 2017, 28 (06) :1191-1206
[8]   Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases [J].
Marrero, Jorge A. ;
Kulik, Laura M. ;
Sirlin, Claude B. ;
Zhu, Andrew X. ;
Finn, Richard S. ;
Abecassis, Michael M. ;
Roberts, Lewis R. ;
Heimbach, Julie K. .
HEPATOLOGY, 2018, 68 (02) :723-750
[9]   A call for deep-learning healthcare [J].
Norgeot, Beau ;
Glicksberg, Benjamin S. ;
Butte, Atul J. .
NATURE MEDICINE, 2019, 25 (01) :14-15
[10]   Microvascular Invasion as a Predictor of Response to Treatment with Sorafenib and Transarterial Chemoembolization for Recurrent Intermediate-Stage Hepatocellular Carcinoma [J].
Peng, Zhenwei ;
Chen, Shuling ;
Xiao, Han ;
Wang, Yu ;
Li, Jiaping ;
Mei, Jie ;
Chen, Zebin ;
Zhou, Qian ;
Feng, Shiting ;
Chen, Minshan ;
Qian, Guojun ;
Peng, Sui ;
Kuang, Ming .
RADIOLOGY, 2019, 292 (01) :237-247