Tasks for artificial intelligence in prostate MRI

被引:19
|
作者
Belue, Mason J. [1 ]
Turkbey, Baris [1 ]
机构
[1] NCI, Mol Imaging Branch, Natl Inst Hlth Bethesda, 10 Ctr Dr,MSC 1182,Bldg 10,Room B3B85, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
Artificial intelligence; Deep learning; Machine learning; Magnetic resonance imaging; Prostatic neoplasms; MULTI-PARAMETRIC MRI; SEGMENTATION; CANCER; DIAGNOSIS;
D O I
10.1186/s41747-022-00287-9
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The advent of precision medicine, increasing clinical needs, and imaging availability among many other factors in the prostate cancer diagnostic pathway has engendered the utilization of artificial intelligence (AI). AI carries a vast number of potential applications in every step of the prostate cancer diagnostic pathway from classifying/improving prostate multiparametric magnetic resonance image quality, prostate segmentation, anatomically segmenting cancer suspicious foci, detecting and differentiating clinically insignificant cancers from clinically significant cancers on a voxel-level, and classifying entire lesions into Prostate Imaging Reporting and Data System categories/Gleason scores. Multiple studies in all these areas have shown many promising results approximating accuracies of radiologists. Despite this flourishing research, more prospective multicenter studies are needed to uncover the full impact and utility of AI on improving radiologist performance and clinical management of prostate cancer. In this narrative review, we aim to introduce emerging medical imaging AI paper quality metrics such as the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) and Field-Weighted Citation Impact (FWCI), dive into some of the top AI models for segmentation, detection, and classification.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Tasks for artificial intelligence in prostate MRI
    Mason J. Belue
    Baris Turkbey
    European Radiology Experimental, 6
  • [2] Artificial intelligence for prostate MRI: open datasets, available applications, and grand challenges
    Sunoqrot, Mohammed R. S.
    Saha, Anindo
    Hosseinzadeh, Matin
    Elschot, Mattijs
    Huisman, Henkjan
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2022, 6 (01)
  • [3] Artificial Intelligence-Enhanced Breast MRI
    Lo Gullo, Roberto
    Marcus, Eric
    Huayanay, Jorge
    Eskreis-Winkler, Sarah
    Thakur, Sunitha
    Teuwen, Jonas
    Pinker, Katja
    INVESTIGATIVE RADIOLOGY, 2024, 59 (03) : 230 - 242
  • [4] Applications of Artificial Intelligence to Prostate Multiparametric MRI (mpMRI): Current and Emerging Trends
    Bardis, Michelle D.
    Houshyar, Roozbeh
    Chang, Peter D.
    Ushinsky, Alexander
    Glavis-Bloom, Justin
    Chahine, Chantal
    Bui, Thanh-Lan
    Rupasinghe, Mark
    Filippi, Christopher G.
    Chow, Daniel S.
    CANCERS, 2020, 12 (05)
  • [5] Artificial intelligence applications of fetal brain and cardiac MRI
    Ren, Jing-Ya
    Zhu, Ming
    Dong, Su-Zhen
    CHINESE JOURNAL OF ACADEMIC RADIOLOGY, 2022, 5 (04) : 217 - 222
  • [6] Artificial Intelligence and Pathomics: Prostate Cancer
    Moghadam, Puria Azadi
    Bashashati, Ali
    Goldenberg, S. Larry
    UROLOGIC CLINICS OF NORTH AMERICA, 2024, 51 (01) : 15 - 26
  • [7] An overview of utilizing artificial intelligence in localized prostate cancer imaging
    Stevenson, Emma
    Esengur, Omer Tarik
    Zhang, Haoyue
    Simon, Benjamin D.
    Harmon, Stephanie A.
    Turkbey, Baris
    EXPERT REVIEW OF MEDICAL DEVICES, 2025, : 293 - 310
  • [8] Artificial intelligence in endodontics: Fundamental principles, workflow, and tasks
    Ourang, Seyed AmirHossein
    Sohrabniya, Fatemeh
    Mohammad-Rahimi, Hossein
    Dianat, Omid
    Aminoshariae, Anita
    Nagendrababu, Venkateshbabu
    Dummer, Paul Michael Howell
    Duncan, Henry F.
    Nosrat, Ali
    INTERNATIONAL ENDODONTIC JOURNAL, 2024, 57 (11) : 1546 - 1565
  • [9] Artificial intelligence development for detecting prostate cancer in MRI
    Aphinives, Chalida
    Aphinives, Potchavit
    EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE, 2021, 52 (01)
  • [10] Artificial intelligence for prostate MRI: open datasets, available applications, and grand challenges
    Mohammed R. S. Sunoqrot
    Anindo Saha
    Matin Hosseinzadeh
    Mattijs Elschot
    Henkjan Huisman
    European Radiology Experimental, 6