Edge length dynamics on graphs with applications to p-adic AdS/CFT

被引:40
作者
Gubser, Steven S. [1 ]
Heydeman, Matthew [2 ]
Jepsen, Christian [1 ]
Marcolli, Matilde [3 ]
Parikh, Sarthak [1 ]
Saberi, Ingmar [4 ]
Stoica, Bogdan [5 ,6 ]
Trundy, Brian [1 ]
机构
[1] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA
[2] CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA
[3] CALTECH, Dept Math, Pasadena, CA 91125 USA
[4] Ruprecht Karls Univ Heidelberg, Math Inst, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[5] Brandeis Univ, Martin A Fisher Sch Phys, Waltham, MA 02453 USA
[6] Brown Univ, Dept Phys, Providence, RI 02912 USA
关键词
Lattice Models of Gravity; AdS-CFT Correspondence; Classical Theories of Gravity; CURVATURE;
D O I
10.1007/JHEP06(2017)157
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We formulate a Euclidean theory of edge length dynamics based on a notion of Ricci curvature on graphs with variable edge lengths. In order to write an explicit form for the discrete analog of the Einstein-Hilbert action, we require that the graph should either be a tree or that all its cycles should be sufficiently long. The infinite regular tree with all edge lengths equal is an example of a graph with constant negative curvature, providing a connection with p-adic AdS/CFT, where such a tree takes the place of anti-de Sitter space. We compute simple correlators of the operator holographically dual to edge length fluctuations. This operator has dimension equal to the dimension of the boundary, and it has some features in common with the stress tensor.
引用
收藏
页数:35
相关论文
共 16 条
[1]  
[Anonymous], ARXIV160507639
[2]  
Bakry D., 1985, SEM PROB 19, V1123, P177
[3]   CURVATURE ASPECTS OF GRAPHS [J].
Bauer, F. ;
Chung, F. ;
Lin, Y. ;
Liu, Y. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (05) :2033-2042
[4]   P-ADIC NUMBERS IN PHYSICS [J].
BREKKE, L ;
FREUND, PGO .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1993, 233 (01) :1-66
[5]   NON-ARCHIMEDEAN STRING DYNAMICS [J].
BREKKE, L ;
FREUND, PGO ;
OLSON, M ;
WITTEN, E .
NUCLEAR PHYSICS B, 1988, 302 (03) :365-402
[6]   Space from Hilbert space: Recovering geometry from bulk entanglement [J].
Cao, ChunJun ;
Carroll, Sean M. ;
Michalakis, Spyridon .
PHYSICAL REVIEW D, 2017, 95 (02)
[7]   Harnack inequalities for graphs with non-negative Ricci curvature [J].
Chung, Fan ;
Lin, Yong ;
Yau, S. -T. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 415 (01) :25-32
[8]   Living on the edge: a toy model for holographic reconstruction of algebras with centers [J].
Donnelly, William ;
Marolf, Donald ;
Michel, Ben ;
Wien, Jason .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (04)
[9]   p-Adic AdS/CFT [J].
Gubser, Steven S. ;
Knaute, Johannes ;
Parikh, Sarthak ;
Samberg, Andreas ;
Witaszczyk, Przemek .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 353 (03) :1019-1059
[10]   Tree-like structure of eternal inflation: A solvable model [J].
Harlow, Daniel ;
Shenker, Stephen H. ;
Stanford, Douglas ;
Susskind, Leonard .
PHYSICAL REVIEW D, 2012, 85 (06)